【題目】如圖,已知在矩形ABCD中,AB=4,BC=2,點(diǎn)OAB的延長(zhǎng)線上,OB=,∠AOE=60°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿射線OE方向運(yùn)動(dòng),以P為圓心,OP為半徑作⊙P,同時(shí)點(diǎn)QB點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿折線B-C-D向點(diǎn)D運(yùn)動(dòng),QD重合時(shí),P,Q同時(shí)停止運(yùn)動(dòng),設(shè)P的運(yùn)動(dòng)時(shí)間t秒.

1)∠BOC= PA的最小值是 ;

2)當(dāng)⊙P過點(diǎn)C時(shí),求⊙P的劣弧與線段OA圍成的封閉圖形的面積;

3)當(dāng)⊙P與矩形ABCD的邊所在直線相切時(shí),求t的值.

【答案】130°;3+2 ;(2;(3)上述t值均在0≤t≤6范圍之內(nèi),當(dāng)⊙P與矩形ABCD的邊所在直線相切時(shí),t的值是4-2

【解析】

1)在直角△OBC中,先根據(jù)銳角的正切求∠BOC的度數(shù);根據(jù)垂線段最短可知:當(dāng)APOP時(shí),PA的值最小,根據(jù)三角函數(shù)求AP的最小值;

2)如圖2,作輔助線,構(gòu)建矩形PCBN,確定⊙P的劣弧與線段OA圍成的封閉圖形是小弓形OM,根據(jù)扇形面積減去三角形面積可得結(jié)論;

3)分三種情況:

①當(dāng)⊙P與矩形ABCD的邊BC相切時(shí),是(2)問中的情況,此時(shí)t;

②當(dāng)⊙P與矩形ABCD的邊AD相切時(shí),如圖3,根據(jù)AN+NO=AO列式可得t的值;

③當(dāng)⊙P與矩形ABCD的邊CD相切時(shí),如圖4,根據(jù)PM+PH=BC列式可得t的值.

1)如圖1

∵四邊形ABCD是矩形,∴∠ABC=90°,∴∠OBC=90°,tanBOC,∴∠BOC=30°.

當(dāng)APOP時(shí),PA的值最小.

OA=AB+OB=4+2.在RtAOP中,∵∠AOE=60°,∴sin60,∴AP3+2,∴PA的最小值是3+2

故答案為:30°,3+2;

2)如圖2,由題意得:OP=半徑r=2t,連接PC、PM,則PC=PM=PO=r=2t,∴∠POC=PCO=BOP﹣∠BOC=60°﹣30°=30°.

∵∠BCO=90°﹣∠BOC=90°﹣30°=60°,∴∠PCB=BCO+PCO=60°+30°=90°,即半徑PCBC(此時(shí)直線BC與⊙P相切).

PNOMN,∴∠PNB=NBC=BCP=90°,∴四邊形PCBN是矩形,∴BN=PC=2t

∵∠NOP=60°,∴在RtPNO中,∠OPN=30°,∴ONOP=t

BN+ON=BO,∴2t+t=2,∴t,r,∴當(dāng)t時(shí),⊙P經(jīng)過點(diǎn)C,S小弓形OM=S扇形POMSPOM

∵∠POM=60°且PO=PM,∴△POM是等邊三角形,∴OM=2ON=2tPNt=2,∴S小弓形OM2π

答:⊙P的劣弧與線段OA圍成的封閉圖形的面積為π;

3)①當(dāng)⊙P與矩形ABCD的邊BC相切時(shí),是(2)問中⊙P過點(diǎn)C,此時(shí)t;

②當(dāng)⊙P與矩形ABCD的邊AD相切時(shí),如圖3,過PPFADF,過PPNAON,AN=FP=r=2tONOP=t

AN+NO=AO,∴2t+t=24t

③當(dāng)⊙P與矩形ABCD的邊CD相切時(shí),如圖4,過PMDCM,交OAH,則PM=OP=2t,PHt

PM+PH=BC,∴2tt=2,t=42

綜上所述:當(dāng)⊙P與矩形ABCD的邊所在直線相切時(shí)t的值是42

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線,經(jīng)過點(diǎn)、,過點(diǎn)軸的平行線交拋物線于另一點(diǎn)

(1)求拋物線的表達(dá)式及其頂點(diǎn)坐標(biāo);

(2)如圖,點(diǎn)是第一象限中上方拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作于點(diǎn),作軸于點(diǎn),交于點(diǎn),在點(diǎn)運(yùn)動(dòng)的過程中,的周長(zhǎng)是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由;

(3)如圖,連接,在軸上取一點(diǎn),使相似,請(qǐng)求出符合要求的點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形中,點(diǎn)、、、分別在、、、上,且

四邊形是正方形嗎?為什么?

若正方形的邊長(zhǎng)為,且,請(qǐng)求出四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,嘉淇一家駕車從A地出發(fā),沿著北偏東30°的方向行駛30公里到達(dá)B地游玩,之后打算去距離A地正東30公里處的C地,則他們行駛的方向是(

A. 南偏東60°B. 南偏東30°C. 南偏西60°D. 南偏西30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形的頂點(diǎn),點(diǎn)軸正半軸上.按以下步驟作圖:①以點(diǎn)為圓心,適當(dāng)長(zhǎng)度為半徑作弧,分別交邊于點(diǎn),;②分別以點(diǎn),為圓心,大于的長(zhǎng)為半徑作弧,兩弧在內(nèi)交于點(diǎn);③作射線,交邊于點(diǎn).則點(diǎn)的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年我國(guó)科技實(shí)力進(jìn)一步增強(qiáng),嫦娥探月、北斗組網(wǎng)、航母海試、鯤龍擊水、港珠澳大橋正式通車……,這些成就的取得離不開國(guó)家對(duì)科技研發(fā)的大力投入.下圖是2014—2018年我國(guó)研究與試驗(yàn)發(fā)展(R&D)經(jīng)費(fèi)支出及其增長(zhǎng)速度情況. 2018年我國(guó)研究與試驗(yàn)發(fā)展(R&D)經(jīng)費(fèi)支出為19657億元,比上年增長(zhǎng)11.6%,其中基礎(chǔ)研究經(jīng)費(fèi)1118億元.

根據(jù)統(tǒng)計(jì)圖提供的信息,下列說法中合理的是(

A. 2014—2018年,我國(guó)研究與試驗(yàn)發(fā)展(R&D)經(jīng)費(fèi)支出的增長(zhǎng)速度始終在增加

B. 2014—2018年,我國(guó)研究與試驗(yàn)發(fā)展(R&D)經(jīng)費(fèi)支出增長(zhǎng)速度最快的年份是2017

C. 2014—2018年,我國(guó)研究與試驗(yàn)發(fā)展(R&D)經(jīng)費(fèi)支出增長(zhǎng)最多的年份是2017

D. 2018年,基礎(chǔ)研究經(jīng)費(fèi)約占該年研究與試驗(yàn)發(fā)展( (R&D)經(jīng)費(fèi)支出的10%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=t+1x2+2t+2x+x=0x=2時(shí)的函數(shù)值相等.

1)求二次函數(shù)的解析式;

2)若一次函數(shù)y=kx+6的圖象與二次函數(shù)的圖象都經(jīng)過點(diǎn)A-3,m),求mk的值;

3)設(shè)二次函數(shù)的圖象與x軸交于點(diǎn)BC(點(diǎn)B在點(diǎn)C的左側(cè)),將二次函數(shù)的圖象在點(diǎn)B,C間的部分(含點(diǎn)B和點(diǎn)C)向左平移nn0)個(gè)單位后得到的圖象記為G,同時(shí)將(2)中得到的直線y=kx+6向上平移n個(gè)單位.請(qǐng)結(jié)合圖象回答:當(dāng)平移后的直線與圖象G有公共點(diǎn)時(shí),求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=∠B90°,∠C60°,BCCD8,將四邊形ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕為EF,則BE的長(zhǎng)為(  )

A. 1B. 2C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)九年級(jí)學(xué)生參加學(xué)業(yè)水平質(zhì)量監(jiān)測(cè)。隨機(jī)抽取其中25名學(xué)生的成績(jī)(滿分為100分),統(tǒng)計(jì)如下:

9074,88,65,9875,81,4285,70,5580,95,8872,88,6056,76,6678,72,8263,100.

190分及以上為級(jí),75—89分為級(jí),60—74分為級(jí),60分以下為級(jí)。請(qǐng)把下面表格補(bǔ)充完整:

等級(jí)

人數(shù)

8

2)根據(jù)(1)中完成的表格,可知這組數(shù)據(jù)的極差是____,中位數(shù)是____,眾數(shù)是____.

3)該地區(qū)某學(xué)校九年級(jí)共有1000名學(xué)生,如果60分及以上為及格,請(qǐng)估計(jì)該校九年級(jí)參加此次學(xué)業(yè)水平質(zhì)量監(jiān)測(cè)有多少人及格?

4)若要知道抽測(cè)中每一個(gè)等級(jí)的人數(shù)占總?cè)藬?shù)的百分比,應(yīng)選擇_____統(tǒng)計(jì)圖.

查看答案和解析>>

同步練習(xí)冊(cè)答案