【題目】如圖中有四條互相不平行的直線L1、L2、L3、L4所截出的七個角.關(guān)于這七個角的度數(shù)關(guān)系,下列何者正確( 。
A. ∠2=∠4+∠7 B. ∠3=∠1+∠6 C. ∠1+∠4+∠6=180° D. ∠2+∠3+∠5=360°
【答案】C
【解析】
A項,根據(jù)三角形外角的性質(zhì)可知,∠2=∠4+∠6,因為L3和L4不平行,所以∠6≠∠7,所以∠2≠∠4+∠7,故A項錯誤;
B項,根據(jù)三角形外角的性質(zhì)可知,∠3=∠AOB+∠OAB,根據(jù)對頂角相等可知,∠1=∠AOB,∠7=∠OAB,所以∠3=∠1+∠7,因為L3和L4不平行,所以∠7≠∠6,所以∠3≠∠1+∠6,故B項錯誤;
C項,根據(jù)三角形內(nèi)角和定理可知,∠AOB+∠4+∠6=180°,又根據(jù)對頂角相等可知,∠1=∠AOB,所以∠1+∠4+∠6=180°,故C項正確;
D項,根據(jù)三角形外角的性質(zhì)可知,∠2=∠4+∠6,又因為∠5+∠6=180°,所以∠2+∠3+∠5=∠4+∠6+∠3+∠5=∠3+∠4+180°,因為L3和L4不平行,所以∠3+∠4≠180°,所以∠2+∠3+∠5≠360°,故D項錯誤.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直線上,線段,動點從出發(fā),以每秒2個單位長度的速度在直線上運動.為的中點,為的中點,設(shè)點的運動時間為秒.
(1)若點在線段上的運動,當時,________;
(2)若點在射線上的運動,當時,求點的運動時間的值;
(3)當點在線段的反向延長線上運動時,線段AB、PM、PN有怎樣的數(shù)量關(guān)系?請寫出你的結(jié)論,并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程(x+1)(x﹣2)=10根的情況是( 。
A. 無實數(shù)根 B. 有兩個正根
C. 有兩個根,且都大于﹣1 D. 有兩個根,其中一根大于2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市在今年對全市6000名八年級學(xué)生進行了一次視力抽樣調(diào)查,并根據(jù)統(tǒng)計數(shù)據(jù),制作了如圖所示的統(tǒng)計表和統(tǒng)計圖.
組別 | 視力 | 頻數(shù)(人) |
20 | ||
70 | ||
10 |
請根據(jù)圖表信息回答下列問題:
(1)求抽樣調(diào)查的人數(shù);
(2)___________,_____________,_____________;
(3)補全頻數(shù)分布直方圖;
(4)若視力在4.9以上(含4.9)均屬正常,則視力正常的人數(shù)占被統(tǒng)計人數(shù)的百分比是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展了“手機伴我健康行”主題活動.他們隨機抽取部分學(xué)生進行“手機使用目的”和“每周使用手機時間”的問卷調(diào)查,并繪制成如圖①②的統(tǒng)計圖。已知“查資料”人人數(shù)是40人。
請你根據(jù)以上信息解答以下問題
(1)在扇形統(tǒng)計圖中,“玩游戲”對應(yīng)的圓心角度數(shù)是_______________。
(2)補全條形統(tǒng)計圖
(3)該校共有學(xué)生1200人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了估計魚塘中成品魚(個體質(zhì)量在0.5 kg及以上,下同)的總質(zhì)量,先從魚塘中捕撈50條成品魚,稱得它們的質(zhì)量如下表:
然后做上記號再放回魚塘中,過幾天又捕撈了100條成品魚,發(fā)現(xiàn)其中2條帶有記號.
(1)請根據(jù)表中數(shù)據(jù)補全下面的直方圖(各組中數(shù)據(jù)包括左端點不包括右端點);
(2)根據(jù)圖中數(shù)據(jù)分組,估計從魚塘中隨機捕一條成品魚,其質(zhì)量落在哪一組的可能性最大?
(3)根據(jù)圖中數(shù)據(jù)分組,估計魚塘里質(zhì)量中等的成品魚,其質(zhì)量落在哪一組內(nèi)?
(4)請你用適當?shù)姆椒ü烙嬼~塘中成品魚的總質(zhì)量(精確到1 kg).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為正方形.在邊AD上取一點E,連接BE,使∠AEB=60°.
(1)利用尺規(guī)作圖(保留作圖痕跡):分別以點B、C為圓心,BC長為半徑作弧交正方形內(nèi)部于點T,連接BT并延長交邊AD于點E,則∠AEB=60°;
(2)在前面的條件下,取BE中點M,過點M的直線分別交邊AB、CD于點P、Q.
①當PQ⊥BE時,求證:BP=2AP;
②當PQ=BE時,延長BE,CD交于N點,猜想NQ與MQ的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一輛摩拜單車放在水平的地面上,車把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現(xiàn)測得AC、BC與AB的夾角分別為45°與68°,若點C到地面的距離CD為28cm,坐墊中軸E處與點B的距離BE為4cm,求點E到地面的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是長方形,四邊形AEFG是正方形,點E,G分別在AB,AD上,連接FC,過點E作EH∥FC交BC于點H.若∠BCF=30°,CD=4,CF=6,則正方形AEFG的面積為( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com