【題目】已知二次函數(shù)的圖象的對稱軸是直線,它與軸交于、兩點,與軸交與點,點、的坐標分別是、.
(1)請在平面直角坐標系內(nèi)畫出示意圖;
(2)求此圖象所對應(yīng)的函數(shù)關(guān)系式;
(3)若點是此二次函數(shù)圖象上位于軸上方的一個動點,求面積的最大值.
【答案】(1)詳見解析;(2);(3)面積的最大值為.
【解析】
(1)根據(jù)對稱性可求得B點坐標為(3,0),再根據(jù)描點法,可畫出圖象;
(2)設(shè)拋物線的解析式為y=ax2+bx+c,把A、B、C三點的坐標代入可求得解析式;
(3)根據(jù)題意AB長度不變,則當點P離x軸遠則△ABP的面積越大,可知點P為頂點,可求得頂點坐標,再計算出△APB的面積即可.
(1)∵對稱軸為x=1,A為(﹣1,0),∴B為(3,0),∴拋物線圖象示意圖如圖所示:
(2)設(shè)拋物線的解析式為y=ax2+bx+c.
∵圖象過A、B、C三點,∴把三點的坐標代入可得:,解得:,∴拋物線解析式為y=﹣x2+x+;
(3)根據(jù)題意可知當P為頂點時△ABP的面積最大.
∵y=﹣x2+x+=,∴其頂點坐標為(1,2),且AB=4,∴S△ABP=×4×2=4,即△ABP面積的最大值為4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在圓心角為90°的扇形OAB中,點F、C在半徑OA、OB上,且OC=OF,以CF為邊作正方形CDEF,另兩頂點D、E在弧AB上,若扇形OAB的面積為25π,則正方形CDEF的面積為( )
A. 25 B. 40 C. 50 D. π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸是直線x=-1,有以下結(jié)論:①abc>0;②4ac<b2;③2a+b=0;④a-b+c>0.其中正確的結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),在和中,為邊上一點,平分,,.
(1)求證:
(2)如圖(2),若,連接交于,為邊上一點,滿足,連接交于. ①求的度數(shù);
②若平分,試說明:平分.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象交坐標軸于A(﹣1,0),B(4,0),C(0,﹣4)三點,點P是直線BC下方拋物線上一動點.
(1)求這個二次函數(shù)的解析式;
(2)動點P運動到什么位置時,△PBC面積最大,求出此時P點坐標和△PBC的最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,-1).
(1)請以y軸為對稱軸,畫出與△ABC對稱的△A1B1C1,并直接寫出點A1、B1、C1的坐標;
(2)△ABC的面積是 .
(3)點P(a+1,b-1)與點C關(guān)于x軸對稱,則a= ,b= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商人將進貨單價為元的某種商品按元銷售時,每天可賣出件.現(xiàn)在他采用提高售價的辦法增加利潤,已知這種商品銷售單價每漲元,銷售量就減少件,那么他將售價每個定為________元時,才能使每天所賺的利潤最大,每天最大利潤是________元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,在中,是高,是角平分線,它們相交于點,.求和的度數(shù).
(2)一個多邊形的內(nèi)角和是外角和的3倍,它是幾邊形?若這個多邊形的各個內(nèi)角都相等,求這個多邊形的每個內(nèi)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點A(1,4)、點B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com