【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P(x,y),我們把點(diǎn)(-y+1,x+1)叫做點(diǎn)P伴隨點(diǎn).已知點(diǎn)A1的伴隨點(diǎn)為A2,點(diǎn)A2的伴隨點(diǎn)為A3,點(diǎn)A3的伴隨點(diǎn)為A4,…,這樣依次得到點(diǎn)A1,A2,A3,…,An,….若點(diǎn)A1的坐標(biāo)為(2,4),點(diǎn)A2017的坐標(biāo)為 ( )
A. (-3,3) B. (-2,-2) C. (3,-1) D. (2,4)
【答案】D
【解析】
根據(jù)“伴隨點(diǎn)”的定義依次求出各點(diǎn),不難發(fā)現(xiàn),每4個(gè)點(diǎn)為一個(gè)循環(huán)組依次循環(huán),用2017除以4,根據(jù)商和余數(shù)的情況確定點(diǎn)A2017的坐標(biāo)即可.
∵點(diǎn)A1的坐標(biāo)為(2,4),
∴A2(-4+1,2+1)即(-3,3),A3(-3+1,-3+1)即(-2,-2),A4(2+1,-2+1)即(3,-1),A5(2,4),
…,
依此類(lèi)推,每4個(gè)點(diǎn)為一個(gè)循環(huán)組依次循環(huán),
∵2017÷4=504余1,
∴點(diǎn)A2017的坐標(biāo)與A1的坐標(biāo)相同,為(2,4);
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
在四邊形ABCD中,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,∠ADB=∠CBD,添加下列一個(gè)條件后,仍不能判定四邊形ABCD是平行四邊形的是( )
A.∠ABD=∠CDB
B.∠DAB=∠BCD
C.∠ABC=∠CDA
D.∠DAC=∠BCA
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電器超市銷(xiāo)售每臺(tái)進(jìn)價(jià)分別為190元、160元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷(xiāo)售情況:
銷(xiāo)售時(shí)段 | 銷(xiāo)售數(shù)量 | 銷(xiāo)售收入 | |
A種型號(hào) | B種型號(hào) | ||
第一周 | 3臺(tái) | 5臺(tái) | 1720元 |
第二周 | 4臺(tái) | 10臺(tái) | 2960 元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷(xiāo)售收入﹣進(jìn)貨成本)
(1)求A、B兩種型號(hào)的電風(fēng)扇的銷(xiāo)售單價(jià);
(2)若超市準(zhǔn)備用不多于5100元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共30臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?
(3)在(2)的條件下,超市銷(xiāo)售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)為1400元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD∥BC,BD為∠ABC的角平分線(xiàn),DE、DF分別是∠ADB和∠ADC的角平分線(xiàn),且∠BDF=α,則以下∠A與∠C的關(guān)系正確的是( )
A.∠A=2∠C+αB.∠A=2∠C+2αC.∠A=∠C+αD.∠A=∠C+2α
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線(xiàn)相交于點(diǎn)O,過(guò)點(diǎn)O作EF∥BC交AB于點(diǎn)E,交AC于點(diǎn)F,過(guò)點(diǎn)O作OD⊥AC于點(diǎn)D,下列四個(gè)結(jié)論:①BE=EF-CF;②∠BOC=90°+∠A;③點(diǎn)O到△ABC各邊的距離相等;④設(shè)OD=m,AE+AF=n,則S△AEF=mn,其中正確的結(jié)論是______.(填所有正確的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)l1的解析式為y=-x,直線(xiàn)l2與l1交于點(diǎn)A(a,-a),與y軸交于點(diǎn)B(0,b),其中a,b滿(mǎn)足(a+3)2+=0.
(1)求直線(xiàn)l2的解析式;
(2)在平面直角坐標(biāo)系中第二象限有一點(diǎn)P(m,5),使得S△AOP=S△AOB,請(qǐng)求出點(diǎn)P的坐標(biāo);
(3)已知平行于y軸左側(cè)有一動(dòng)直線(xiàn),分別與l1,l2交于點(diǎn)M、N,且點(diǎn)M在點(diǎn)N的下方,點(diǎn)Q為y軸上一動(dòng)點(diǎn),且△MNQ為等腰直角三角形,請(qǐng)求出滿(mǎn)足條件的點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形網(wǎng)格中,小格的頂點(diǎn)叫做格點(diǎn).三個(gè)頂點(diǎn)都在網(wǎng)格上的三角形叫做格點(diǎn)三角形.小華已在左邊的正方形網(wǎng)格中作出了格點(diǎn)△ABC.請(qǐng)你在右邊的兩個(gè)正方形網(wǎng)格中各畫(huà)出一個(gè)不同的格點(diǎn)三角形,使得三個(gè)網(wǎng)格中的格點(diǎn)三角形都相似(不包括全等).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道:有一內(nèi)角為直角的三角形叫做直角三角形.類(lèi)似地,我們定義:有一內(nèi)角為45°的三角形叫做半直角三角形.如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),A(4,0),B(-4,0),D是y軸上的一個(gè)動(dòng)點(diǎn),∠ADC=90°(A、D、C按順時(shí)針?lè)较蚺帕?, BC與經(jīng)過(guò)A,B,D三點(diǎn)的⊙M交于點(diǎn)E,DE平分∠ADC,連結(jié)AE,BD.顯然△DCE,△DEF,△DAE是半直角三角形.
(1)求證:△ABC是半直角三角形;
(2)求證:∠DEC=∠DEA;
(3)若點(diǎn)D的坐標(biāo)為(0,8),
①求AE的長(zhǎng);
②記BC與AD的交點(diǎn)為F,求ΔACF與ΔBCA的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明同學(xué)在做作業(yè)時(shí),遇到這樣一道幾何題:
已知:如圖1,l1∥l2∥l3,點(diǎn)A、M、B分別在直線(xiàn)l1,l2,l3上,MC平分∠AMB,∠1=28°,∠2=70°.求:∠CMD的度數(shù).
小明想了許久沒(méi)有思路,就去請(qǐng)教好朋友小堅(jiān),小堅(jiān)給了他如圖2所示的提示:
請(qǐng)問(wèn)小堅(jiān)的提示中①是∠ ,④是∠ .
理由②是: ;
理由③是: ;
∠CMD的度數(shù)是 °.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com