【題目】如圖,已知△AOB和△A1OB1是以點O為位似中心的位似圖形,且△AOB和△A1OB1的周長之比為12,點B的坐標為(-1,2),則點B1的坐標為(  )

A. B. C. D.

【答案】A

【解析】

BBCy軸于C,過B1B1Dy軸于D,依據(jù)△AOB和△A1OB1相似,且周長之比為12,即可得到,再根據(jù)△BOC∽△B1OD,可得OD=2OC=4,B1D=2BC=2,進而得出點B1的坐標為(2-4).

解:如圖,過BBCy軸于C,過B1B1Dy軸于D,

∵點B的坐標為(-12),

BC=1OC=2,

∵△AOB和△A1OB1相似,且周長之比為12,

,

∵∠BCO=B1DO=90°,∠BOC=B1OD

∴△BOC∽△B1OD,

OD=2OC=4,B1D=2BC=2,

∴點B1的坐標為(2,-4),

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的四個頂點分別在正方形EFGH的四條邊上,我們稱正方形EFGH是正方形ABCD的外接正方形.

探究一:巳知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的2倍?如圖,假設存在正方形EFGH,它的面積是正方形ABCD的2倍.

因為正方形ABCD的面積為1,則正方形EFGH的面積為2,

所以EF=FG=GH=HE=,設EB=x,則BF=﹣x,

∵Rt△AEB≌Rt△BFC

∴BF=AE=﹣x

在Rt△AEB中,由勾股定理,得

x2+(﹣x)2=12

解得,x1=x2=

∴BE=BF,即點B是EF的中點.

同理,點C,D,A分別是FG,GH,HE的中點.

所以,存在一個外接正方形EFGH,它的面積是正方形ABCD面積的2倍

探究二:巳知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的3倍?(仿照上述方法,完成探究過程)

探究三:巳知邊長為1的正方形ABCD,   一個外接正方形EFGH,它的面積是正方形ABCD面積的4倍?(填“存在”或“不存在”)

探究四:巳知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的n倍?(n>2)(仿照上述方法,完成探究過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線ly=-2x-8分別與x軸,y軸相交于A,B兩點,點P0,k)是y軸的負半軸上的一個動點,以P為圓心,3為半徑作⊙P

1)若⊙Px軸有公共點,則k的取值范圍是______

2)連接PA,若PA=PB,試判斷⊙Px軸的位置關系,并說明理由;

3)當⊙P與直線l相切時,k的值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市某中學積極響應創(chuàng)建全國文明城市活動,舉辦了以“校園文明”為主題的手抄報比賽.所有參賽作品均獲獎,獎項分為一等獎、二等獎、三等獎和優(yōu)秀獎,將獲獎結(jié)果繪制成如右兩幅統(tǒng)計圖.請你根據(jù)圖中所給信息解答意)

1)等獎所占的百分比是________;三等獎的人數(shù)是________人;

2)據(jù)統(tǒng)計,在獲得一等獎的學生中,男生與女生的人數(shù)比為,學校計劃選派1名男生和1名女生參加市手抄報比賽,請求出所選2位同學恰是1名男生和1名女生的概率;

3)學校計劃從獲得二等獎的同學中選取一部分人進行集訓使其提升為一等獎,要使獲得一等獎的人數(shù)不少于二等獎人數(shù)的2倍,那么至少選取多少人進行集訓?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解七年級1000名學生的身體健康情況,從該年級隨機抽取了若干名學生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5﹣46.5;B:46.5﹣53.5;C:53.5﹣60.5;D:60.5﹣67.5;E:67.5﹣74.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.

請解答下列問題:

(1)這次隨機抽取了   名學生調(diào)查,并補全頻數(shù)分布直方圖;

(2)在抽取調(diào)查的若干名學生中體重在   組的人數(shù)最多,在扇形統(tǒng)計圖中D組的圓心角是   度;

(3)請你估計該校七年級體重超過60kg的學生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,E是對角線BD上的一點,過點CCFDB,且CF=DE,連接AE,BF,EF

1)求證:△ADE≌△BCF

2)若∠ABE+BFC=180°,則四邊形ABFE是什么特殊四邊形?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(探索發(fā)現(xiàn))

如圖,是等邊三角形,點邊上一個動點,將繞點逆時針旋轉(zhuǎn)得到,連接.小明在探索這個問題時發(fā)現(xiàn)四邊形是菱形.

小明是這樣想的:

1)請參考小明的思路寫出證明過程;

2)直接寫出線段,之間的數(shù)量關系:______________

(理解運用)

如圖,在中,于點.繞點逆時針旋轉(zhuǎn)得到,延長,交于點.

3)判斷四邊形的形狀,并說明理由;

(拓展遷移)

4)在(3)的前提下,如圖,將沿折疊得到,連接,若,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:我們知道,在四邊形ABCD中,當對角線,若,時,

1)則四邊形ABCD的面積為

小凱遇到一個問題:如圖1,在四邊形ABCD中,對角線ACBD相交于點O,,,,求四邊形ABCD的面積。

小凱發(fā)現(xiàn),如圖2分別過點A、C作直線BD的垂線,垂足分別為點EF,設AOm,通過計算的面積和使問題得以解決。

請回答:

2的面積為 (用含m的式子表示)

3)求四邊形ABCD的面積。

參考小凱思考問題的方法,解決問題:如圖3,在四邊形ABCD中,對角線AC、BD相交于點O,,),則四邊形ABCD的面積為 (用含a,b,的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,以為斜邊作等腰直角三角形,且點與點在直線的兩側(cè),連接

1)如圖1,若,則的度數(shù)為______.

   

2)已知,.

①依題意將圖2補全;

②求的長;

小聰通過觀察、實驗、提出猜想,與同學們進行交流,通過討論,形成了求長的幾種想法:

想法1:延長,在延長線上截取,連接.要求的長,需證明,為等腰直角三角形.

想法2:過點于點,,交的延長線于點,要求的長,需證明為等腰直角三角形.

……

請參考上面的想法,幫助小聰求出的長(一種方法即可).

3)用等式表示線段,,之間的數(shù)量關系(直接寫出即可).

查看答案和解析>>

同步練習冊答案