【題目】閱讀材料:我們知道,在四邊形ABCD中,當(dāng)對(duì)角線,若,時(shí),
(1)則四邊形ABCD的面積為 ;
小凱遇到一個(gè)問(wèn)題:如圖1,在四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,,,,求四邊形ABCD的面積。
小凱發(fā)現(xiàn),如圖2分別過(guò)點(diǎn)A、C作直線BD的垂線,垂足分別為點(diǎn)E,F,設(shè)AO為m,通過(guò)計(jì)算與的面積和使問(wèn)題得以解決。
請(qǐng)回答:
(2)的面積為 (用含m的式子表示)
(3)求四邊形ABCD的面積。
參考小凱思考問(wèn)題的方法,解決問(wèn)題:如圖3,在四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,,,(),則四邊形ABCD的面積為 (用含a,b,的式子表示)
【答案】(1)12;(2);(3);解決問(wèn)題:.
【解析】
(1) 設(shè)AC與BD的垂足為O,根據(jù)三角形的面積公式得到S△ABC= ACOC,S△ADC=ACOD,兩式相加得到S四邊形ABCD=S△ABC+S△ADC=ACOC+ACOD=ACBD,然后把AC=4,BD=6代入計(jì)算即可;
(2)首先得出AE的長(zhǎng),再利用三角形的面積公式求出即可;
(3)根據(jù)直角三角形的性質(zhì)可得AE=m,再根據(jù)三角形的面積公式可得S△ABD=BDAE=m,同理再表示CF= (4m),然后再表示△BCD的面積,再求兩個(gè)三角形的面積和可得答案;解決問(wèn)題:方法類(lèi)似.
(1) 設(shè)AC與BD的垂足為O,如圖所示:
∴S△ABC=ACOB,S△ADC=ACOD,
∴S四邊形ABCD=S△ABC+S△ADC=ACOB+ACOD=ACBD,
而AC=4,BD=6,
∴S四邊形ABCD=46=12.
故答案是:12.
(2)∵AO=m,∠AOB=30°,
∴AE=m,
∴△ABD的面積為:×m×6=m;
故答案為:m;
(3),
∵,,
∴,
∴,
同理:,
∴,
∴;
解決問(wèn)題:分別過(guò)點(diǎn)A、C作直線BD的垂線,垂足分別為點(diǎn)E,F,設(shè),
∵,,
∴,
∴,
同理:,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為半圓內(nèi)一點(diǎn),為圓心,直徑長(zhǎng)為,,,將繞圓心逆時(shí)針旋轉(zhuǎn)至,點(diǎn)在上,則邊掃過(guò)區(qū)域(圖中陰影部分)的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△AOB和△A1OB1是以點(diǎn)O為位似中心的位似圖形,且△AOB和△A1OB1的周長(zhǎng)之比為1:2,點(diǎn)B的坐標(biāo)為(-1,2),則點(diǎn)B1的坐標(biāo)為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小學(xué)學(xué)生較多,為了便于學(xué)生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個(gè),食堂師傅在窗口隨機(jī)發(fā)放(發(fā)放的食品價(jià)格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.
(1)按約定,“小李同學(xué)在該天早餐得到兩個(gè)油餅”是 事件;(可能,必然,不可能)
(2)請(qǐng)用列表或樹(shù)狀圖的方法,求出小張同學(xué)該天早餐剛好得到豬肉包和油餅的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:正方形與正方形共頂點(diǎn).
(1)探究:如圖,點(diǎn)在正方形的邊上,點(diǎn)在正方形的邊上,連接.求證:;
(2)拓展:將如圖中正方形繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)角,如圖所示,試探究線段與之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)運(yùn)用:正方形在旋轉(zhuǎn)過(guò)程中,當(dāng),,三點(diǎn)在一條直線上時(shí),如圖所示,延長(zhǎng)交于點(diǎn).若,GH=2,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2013年四川綿陽(yáng)12分)“低碳生活,綠色出行”,自行車(chē)正逐漸成為人們喜愛(ài)的交通工具.某運(yùn)動(dòng)商城的自行車(chē)銷(xiāo)售量自2013年起逐月增加,據(jù)統(tǒng)計(jì),該商城1月份銷(xiāo)售自行車(chē)64輛,3月份銷(xiāo)售了100輛.
(1)若該商城前4個(gè)月的自行車(chē)銷(xiāo)量的月平均增長(zhǎng)率相同,問(wèn)該商城4月份賣(mài)出多少輛自行車(chē)?
(2)考慮到自行車(chē)需求不斷增加,該商城準(zhǔn)備投入3萬(wàn)元再購(gòu)進(jìn)一批兩種規(guī)格的自行車(chē),已知A型車(chē)的進(jìn)價(jià)為500元/輛,售價(jià)為700元/輛,B型車(chē)進(jìn)價(jià)為1000元/輛,售價(jià)為1300元/輛.根據(jù)銷(xiāo)售經(jīng)驗(yàn),A型車(chē)不少于B型車(chē)的2倍,但不超過(guò)B型車(chē)的2.8倍.假設(shè)所進(jìn)車(chē)輛全部售完,為使利潤(rùn)最大,該商城應(yīng)如何進(jìn)貨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O,交BC邊于邊D,交AC邊于點(diǎn)G,過(guò)D作⊙O的切線EF,交AB的延長(zhǎng)線于點(diǎn)F,交AC于點(diǎn)E.
(1)求證:BD=CD;
(2)若AE=6,BF=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著網(wǎng)絡(luò)購(gòu)物的盛行,“菜鳥(niǎo)驛站”新興的代收快遞業(yè)務(wù)越來(lái)越受到人們的青睞.“菜鳥(niǎo)驛站”某代收點(diǎn)只代收,兩區(qū)的快遞.4月份該代收點(diǎn)對(duì),兩區(qū)代收數(shù)據(jù)進(jìn)行統(tǒng)計(jì),區(qū)比區(qū)平均每個(gè)快遞輕1千克.
(1)4月份第四周區(qū)共有300個(gè)快遞,區(qū)快遞數(shù)為區(qū)的,若本周該代收點(diǎn)的快遞重量不低于1700千克,則區(qū)該周平均每個(gè)快遞至少重多少千克?
(2)隨著夏季的到來(lái),5月份第四周區(qū)快遞數(shù)比4月份第四周增長(zhǎng)了,但區(qū)平均每個(gè)快遞比(1)中相應(yīng)最少重量減少了千克,區(qū)快遞數(shù)比4月份第四周增長(zhǎng)了10%,平均每單比(1)中相應(yīng)最少重量減少了,第四周兩區(qū)快遞總重量比第四周的最少重量減少了336千克,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小武新家裝修,在裝修客廳時(shí),購(gòu)進(jìn)彩色地磚和單色地磚共100塊,共花費(fèi)5600元.已知彩色地磚的單價(jià)是80元/塊,單色地磚的單價(jià)是40元/塊.
(1)兩種型號(hào)的地磚各采購(gòu)了多少塊?
(2)如果廚房也要鋪設(shè)這兩種型號(hào)的地磚共60塊,且采購(gòu)地磚的費(fèi)用不超過(guò)3200元,那么彩色地磚最多能采購(gòu)多少塊?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com