【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)實(shí)根,且其中一個(gè)根為另一根的2倍,則稱這樣的方程為倍根方,以下關(guān)于倍根方程的說(shuō)法正確的是______(填正確序號(hào))

①方程x2﹣x﹣2=0是倍根方程.

②若(x﹣2)(mx+n=0是倍根方程,則4m2+5mn+n2=0

③若點(diǎn)(p,q)在反比例函數(shù)y=的圖象上,則關(guān)于x的方程px2+3x+q=0是倍根方程.

④若方程ax2+bx+c=0是倍根方程且相異兩點(diǎn)M1+t,s)、N4ts)都在拋物線y=ax2+bx+c上,則方程ax2+bx+c=0必有一個(gè)根為

【答案】②③④

【解析】試題解析:①解方程得:

∴方程不是倍根方程,故①錯(cuò)誤;

是倍根方程,且

故②正確;

③∵點(diǎn)在反比例函數(shù)的圖象上,

解方程 得:

故③正確;

④∵方程 是倍根方程,

∴設(shè)

∵相異兩點(diǎn)都在拋物線上,

∴拋物線的對(duì)稱軸

故④正確.

故答案為:②③④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】仔細(xì)填一填:

把下列各數(shù)填入相應(yīng)的大括號(hào)里:

5,-10,-6,+8,0.3,-,+,-0.72

正數(shù)集合:{ __________________ …}

整數(shù)集合:{__________________…}

負(fù)數(shù)集合:{ __________________ …}

分?jǐn)?shù)集合:{__________________ …}

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰RtABC中,,點(diǎn)P在以斜邊AB為直徑的半圓上,MPC的中點(diǎn).當(dāng)點(diǎn)P沿半圓從點(diǎn)A運(yùn)動(dòng)至點(diǎn)B時(shí),點(diǎn)M運(yùn)動(dòng)的路徑長(zhǎng)是(

A. B. 2 C. D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一個(gè)直角三角形ACB(ACB=90°)繞著頂點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,使得點(diǎn)C旋轉(zhuǎn)到AB邊上的一點(diǎn)D,點(diǎn)A旋轉(zhuǎn)到點(diǎn)E的位置.F,G分別是BD,BE上的點(diǎn),BF=BG,延長(zhǎng)CF與DG交于點(diǎn)H.

(1)求證:CF=DG;

(2)求出FHG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:∠BAC的平分線與BC的垂直平分線DG相交于點(diǎn)D,DE⊥AB,DF⊥AC,垂足分別為E、F,AB=6,AC=3,則BE=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,3),且此拋物線的頂點(diǎn)坐標(biāo)為M(-1,4).

(1)求此拋物線的解析式;

(2)設(shè)點(diǎn)D為已知拋物線對(duì)稱軸上的任意一點(diǎn),當(dāng)ACD面積等于6時(shí),求點(diǎn)D的坐標(biāo);

(3)點(diǎn)P在線段AM上,當(dāng)PCy軸垂直時(shí),過(guò)點(diǎn)P軸的垂線,垂足為E,將PCE沿直線CB翻折,使點(diǎn)P的對(duì)應(yīng)點(diǎn)P'P、E、C處在同一平面內(nèi),請(qǐng)求出P'坐標(biāo),并判斷點(diǎn)P'是否在拋物線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線軸交于點(diǎn)C,與軸交于點(diǎn)B,與反比例函數(shù)的圖象在第一象限交于點(diǎn)A,連接OA,且

(1)求ΔBOC的面積.

(2)求點(diǎn)A的坐標(biāo)和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A、C分別在∠GBE的邊BG、BE上,且AB=AC,AD∥BE,∠GBE的平分線與AD交于點(diǎn)D,連接CD

求證:①AB=AD;

②CD平分∠ACE

【答案】詳見(jiàn)解析.

【解析】(1)∵ADBE,

∴∠ADB=∠DBC,

BD平分∠ABC,

∴∠ABD=∠DBC,

∴∠ABD=∠ADB

AB=AD;

2ADBE,

∴∠ADC=∠DCE,

由①知AB=AD,

又∵AB=AC,

AC=AD,

∴∠ACD=∠ADC

∴∠ACD=∠DCE,

CD平分∠ACE

點(diǎn)睛:角平分線問(wèn)題的輔助線添加及其解題模型.

①垂兩邊:如圖(1),已知平分,過(guò)點(diǎn) ,則.

②截兩邊:如圖(2),已知平分,點(diǎn) 上,在上截取,則.

③角平分線+平行線→等腰三角形:

如圖(3),已知平分, ,則;

如圖(4),已知平分 ,則.

(1) (2) (3) (4)

④三線合一(利用角平分線+垂線→等腰三角形):

如圖(5),已知平分,且,則 .

(5)

型】解答
結(jié)束】
26

【題目】如圖①,AB為半圓的直徑,O為圓心,C為圓弧上一點(diǎn),AD垂直于過(guò)C點(diǎn)的切線,垂足為D,AB的延長(zhǎng)線交直線CD于點(diǎn)E.

(1)求證:AC平分∠DAB;

(2)若AB=4,B為OE的中點(diǎn),CF⊥AB,垂足為點(diǎn)F,求CF的長(zhǎng);

(3)如圖②,連接OD交AC于點(diǎn)G,若,求sinE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一條公路上順次有、三地,甲、乙兩車同時(shí)從地出發(fā),分別勻速前往地、地,甲車到達(dá)地停留一段時(shí)間后原速原路返回,乙車到達(dá)地后立即原速原路返回,乙車比甲車早1小時(shí)返回到地,甲、乙兩車各自行駛的路程(千米)與時(shí)間(小時(shí))(從兩車出發(fā)時(shí)開(kāi)始計(jì)時(shí))之間的函數(shù)圖像如圖所示.

(1)甲車到達(dá)地停留的時(shí)間為 小時(shí);

(2)求甲車返回地的圖中之間的函數(shù)關(guān)系式;

(3)直接寫出兩車在圖中相遇時(shí)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案