【題目】如圖,把一個直角三角形ACB(∠ACB=90°)繞著頂點B順時針旋轉60°,使得點C旋轉到AB邊上的一點D,點A旋轉到點E的位置.F,G分別是BD,BE上的點,BF=BG,延長CF與DG交于點H.
(1)求證:CF=DG;
(2)求出∠FHG的度數.
科目:初中數學 來源: 題型:
【題目】已知二次函數(為非零常數).
()若對稱軸是直線.
①求二次函數的解析式.
②二次函數(為實數)圖象的頂點在軸上,求的值.
()把拋物線向上平移個單位得到新的拋物線,若,求的圖像落在軸上方的部分對應的的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知線段, 于點,且, 是射線上一動點, 、分別是, 的中點,過點, , 的圓與的另一交點(點在線段上),連結, .
()當時,則的度數為__________.
()在點的運動過程中,當時,取四邊形一邊的兩端點和線段上一點,若以這三點為頂點的三角形是直角三角形,當時,則的值為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AC上取點B,在其同一側作兩個等邊三角形△ABD 和△BCE ,連接AE,CD與GF,下列結論正確的有( )
① AE DC;②AHC120;③△AGB≌△DFB;④BH平分AHC;⑤GF∥AC
A.①②④B.①③⑤C.①③④⑤D.①②③④⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABE中,E 90,AC 是BAE的角平分線。
(1)若B 30,求BAC的度數;
(2)若 D 是BC的中點,△ABC的面積為24,CD3,求AE的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC是等邊三角形,點E、F分別為射線AC、射線CB上兩點,CE=BF,直線EB、AF交于點D.
(1)當E、F在邊AC、BC上時如圖,求證:△ABF≌△BCE.
(2)當E在AC延長線上時,如圖,AC=10,S△ABC=25,EG⊥BC于G,EH⊥AB于H,HE=8,EG= .
(3)E、F分別在AC、CB延長線上時,如圖,BE上有一點P,CP=BD,∠CPB是銳角,求證:BP=AD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知A(3,0),以OA為一邊在第一象限內畫正方形OABC,D(m,0)為x軸上的一個動點,以BD為一邊畫正方形BDEF(點F在直線AB右側).
(1)當m>3時(如圖1),試判斷線段AF與CD的數量關系,并說明理由.
(2)當AF=5時,求點E的坐標;
(3)當D點從A點向右移動4個單位,求這一過程中F點移動的路程是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知四邊形ABCD是正方形,點P在直線BC上,點G在直線AD上(P,G不與正方形頂點重合,且在CD的同側),PD=PG,DF⊥PG于點H,交直線AB于點F,將線段PG繞點P逆時針旋轉90°得到線段PE,連結EF.
(1)如圖1,當點P與點G分別在線段BC與線段AD上時.
①請直接寫出線段DG與PC的數量關系(不要求證明);
②求證:四邊形PEFD是菱形;
(2)如圖2,當點P與點G分別在線段BC與線段AD的延長線上時,請猜想四邊形PEFD是怎樣的特殊四邊形,并證明你的猜想.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com