精英家教網 > 初中數學 > 題目詳情

【題目】如圖,把一個直角三角形ACB(ACB=90°)繞著頂點B順時針旋轉60°,使得點C旋轉到AB邊上的一點D,點A旋轉到點E的位置.F,G分別是BD,BE上的點,BF=BG,延長CF與DG交于點H.

(1)求證:CF=DG;

(2)求出FHG的度數.

【答案】解:(1)證明:CBF和DBG中,,

∴△CBF≌△DBG(SAS)。

CF=DG。

(2)∵△CBF≌△DBG,∴∠BCF=BDG。

∵∠CFB=DFH,∴∠DHF=CBF=60°。

∴∠FHG=180°﹣DHF=180°﹣60°=120°。

【解析】

試題(1)在CBF和DBG中,根據SAS即可證得兩個三角形全等,根據全等三角形的對應邊相等即可證得。

(2)根據全等三角形的對應角相等,即可證得DHF=CBF=60°,從而求解。 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知二次函數為非零常數).

)若對稱軸是直線

求二次函數的解析式

二次函數為實數)圖象的頂點在軸上,的值

)把拋物線向上平移個單位得到新的拋物線,,的圖像落在軸上方的部分對應的的取值范圍

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知線段, 于點,且, 是射線上一動點, 、分別是, 的中點,過點 , 的圓與的另一交點(點在線段上),連結

)當時,則的度數為__________

)在點的運動過程中,當時,取四邊形一邊的兩端點和線段上一點,若以這三點為頂點的三角形是直角三角形,當時,則的值為__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線AC上取點B,在其同一側作兩個等邊三角形ABD BCE ,連接AECDGF,下列結論正確的有(

AE DC;②AHC120;③AGB≌△DFB;④BH平分AHC;⑤GFAC

A.①②④B.①③⑤C.①③④⑤D.①②③④⑤

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABE中,E 90,AC BAE的角平分線。

1)若B 30,求BAC的度數;

2)若 D BC的中點,ABC的面積為24,CD3,求AE的長。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC是等邊三角形,點EF分別為射線AC、射線CB上兩點,CE=BF,直線EB、AF交于點D.

1)當E、F在邊AC、BC上時如圖,求證:△ABF≌△BCE.

2)當EAC延長線上時,如圖,AC=10,SABC=25,EGBCG,EHABH,HE=8,EG= .

3E、F分別在AC、CB延長線上時,如圖,BE上有一點P,CP=BD,CPB是銳角,求證:BP=AD.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直線PA⊙OA、B兩點,CD⊙O的切線,切點且C,過點CCD⊥PAD,若AD:DC=1:3,AB=8,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,已知A3,0),以OA為一邊在第一象限內畫正方形OABC,Dm0)為x軸上的一個動點,以BD為一邊畫正方形BDEF(點F在直線AB右側).

1)當m3時(如圖1),試判斷線段AFCD的數量關系,并說明理由.

2)當AF=5時,求點E的坐標;

3)當D點從A點向右移動4個單位,求這一過程中F點移動的路程是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知四邊形ABCD是正方形,點P在直線BC上,點G在直線AD上(P,G不與正方形頂點重合,且在CD的同側),PD=PG,DF⊥PG于點H,交直線AB于點F,將線段PG繞點P逆時針旋轉90°得到線段PE,連結EF

1)如圖1,當點P與點G分別在線段BC與線段AD上時.

請直接寫出線段DGPC的數量關系(不要求證明);

求證:四邊形PEFD是菱形;

2)如圖2,當點P與點G分別在線段BC與線段AD的延長線上時,請猜想四邊形PEFD是怎樣的特殊四邊形,并證明你的猜想.

查看答案和解析>>

同步練習冊答案