【題目】如圖,矩形ABCD的對角線相交于點O,DEAC,CEBD

1)求證:四邊形OCED是菱形;

2)若點ECD的距離為2,CD3,試求出矩形ABCD的面積.

【答案】1)見解析;(2)矩形ABCD的面積=12

【解析】

1)根據(jù)對邊平行得四邊形OCED是平行四邊形,由原矩形對角線相等且互相平分得OC=OD,所以四邊形OCED是菱形;

2)根據(jù)三角形面積公式和矩形的面積等于4個△DEC的面積解答即可。

1)∵DEAC,CEBD,

∴四邊形OCED是平行四邊形,

∵四邊形ABCD是矩形,

ACBDODBD,OCAC

OCOD,

OCED是菱形;

2)∵點ECD的距離為2,CD3,

∴△DEC的面積= ,

∴矩形ABCD的面積=4×312

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從熱氣球C處測得地面A,B兩點的俯角分別為30°,45°,此時熱氣球C處所在位置到地面上點A的距離為400米.求地面上A,B兩點間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校提倡練字,小冬和小紅一起去文具店買鋼筆和字帖,小冬在文具店買1支鋼筆和3本字帖共花了38元,小紅買了2支鋼筆和4本字帖共花了64元.

1)每支鋼筆與每本字帖分別多少元?

2)帥帥在六一節(jié)當天去買,正巧碰到文具店搞促銷,促銷方案有兩種形式:

①所購商品均打九折

②買一支鋼筆贈送一本字帖

帥帥要買5支鋼筆和15本字帖,他有三種選擇方案:

)一次買5支鋼筆和15本字帖,然后按九折付費;

)一次買5支鋼筆和10本字帖,文具店再贈送5本字帖;

)分兩次購買,第一次買5支鋼筆,文具店會贈送5本字帖,第二次再去買10本字帖,可以按九折付費;問帥帥最少要付多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,平行四邊形 ABCD中,O是CD的中點,連接AO并延長,交BC的延長線于點E.

(1)求證:△AOD ≌ △EOC;

(2)連接AC,DE,當∠B∠AEB _______ °時,四邊形ACED是正方形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列四組條件中,不能判定四邊形ABCD是平行四邊形的是  

A. , B. ,

C. D. ,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用同樣規(guī)格的黑、白兩種顏色的正方形瓷磚按下圖所示的方式鋪寬為1.5米的小路.

1)鋪第5個圖形用黑色正方形瓷磚 塊;

2)按照此方式鋪下去,鋪第 n 個圖形用黑色正方形瓷磚 塊;(用含 n的代數(shù)式表示)

3)若黑、白兩種顏色的瓷磚規(guī)格都為( 0.50.5米),且黑色正方形瓷磚每塊價格 25 元,白色正方形瓷磚每塊價格30元,若按照此方式恰好鋪滿該小路某一段(該段小路的總面積為 18.75 平方米),求該段小路所需瓷磚的總費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某區(qū)在實施居民用水額定管理前,對居民生活用水情況進行了調查,下表是通過簡單隨機抽樣獲得的50個家庭去年的月均用水量(單位:噸),并將調查數(shù)據(jù)進行了如下整理:

4.7 2.1 3.1 2.3 5.2 2.8 7.3 4.3 4.8 6.7

4.5 5.1 6.5 8.9 2.2 4.5 3.2 3.2 4.5 3.5

3.5 3.5 3.6 4.9 3.7 3.8 5.6 5.5 5.9 6.2

5.7 3.9 4.0 4.0 7.0 3.7 9.5 4.2 6.4 3.5

4.5 4.5 4.6 5.4 5.6 6.6 5.8 4.5 6.2 7.5

1)把上面的頻數(shù)分布表和頻數(shù)分布直方圖補充完整;

2)從直方圖中你能得到什么信息?(寫出兩條即可)

3)為了鼓勵節(jié)約用水,要確定一個用水量的標準,超出這個標準的部分按1.5倍價格收費,若要使60%的家庭收費不受影響,你覺得家庭月均用水量應該定為多少?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若將代數(shù)式中的任意兩個字母交換,代數(shù)式不變,則稱這個代數(shù)式為完全對稱式,如就是完全對稱式(代數(shù)式中換成b,b換成,代數(shù)式保持不變).下列三個代數(shù)式:①;②;③.其中是完全對稱式的是(

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點C的坐標為(0,4),動點A以每秒1個單位長的速度,從點O出發(fā)沿x軸的正方向運動,M是線段AC的中點.將線段AM以點A為中心,沿順時針方向旋轉90°,得到線段AB.過點B作x軸的垂線,垂足為E,過點C作y軸的垂線,交直線BE于點D.運動時間為t秒.

(1)當點B與點D重合時,求t的值;

(2)設BCD的面積為S,當t為何值時,S=?

(3)連接MB,當MBOA時,如果拋物線y=ax2﹣10ax的頂點在ABM內(nèi)部(不包括邊),求a的取值范圍.

查看答案和解析>>

同步練習冊答案