【題目】用同樣規(guī)格的黑、白兩種顏色的正方形瓷磚按下圖所示的方式鋪寬為1.5米的小路.
(1)鋪第5個圖形用黑色正方形瓷磚 塊;
(2)按照此方式鋪下去,鋪第 n 個圖形用黑色正方形瓷磚 塊;(用含 n的代數(shù)式表示)
(3)若黑、白兩種顏色的瓷磚規(guī)格都為( 長0.5米寬0.5米),且黑色正方形瓷磚每塊價格 25 元,白色正方形瓷磚每塊價格30元,若按照此方式恰好鋪滿該小路某一段(該段小路的總面積為 18.75 平方米),求該段小路所需瓷磚的總費用.
【答案】(1)21;(2)4n+1;(3)2005元.
【解析】
(1)根據(jù)題意構(gòu)造出第五個圖形的形狀,數(shù)黑色正方形瓷磚的塊數(shù),即可得出答案;
(2)多畫幾個圖形,總結(jié)規(guī)律,即可得出答案;
(3)分別求出黑白兩種瓷磚的塊數(shù),乘以各自的價格即可得出答案.
解:(1)由題意可得,鋪第5個圖形用黑色正方形瓷磚21塊;
(2)鋪第1個圖形用黑色正方形瓷磚5塊
鋪第2個圖形用黑色正方形瓷磚9=5+4塊
鋪第3個圖形用黑色正方形瓷磚13=5+4+4塊
鋪第4個圖形用黑色正方形瓷磚17=5+4+4+4塊
鋪第5個圖形用黑色正方形瓷磚21=5+4+4+4+4塊
……
∴鋪第n個圖形用黑色正方形瓷磚5+4(n-1)=4n+1塊
故答案為:4n+1.
(3)18.75÷(0.5×0.5)=75(塊)
由題意可得,鋪第n個圖形共用正方形瓷磚9+6(n-1)=6n+3塊,鋪第n個圖形用白色正方形瓷磚4+2(n-1)=2n+2塊
6n+3=75,解得:n=12
可知,第12個圖形用黑色正方形:4×12+1=49塊,用白色正方形:2×12+2=26塊
所以總費用=49×25+26×30=2005(元)
答:該段小路所需瓷磚的總費用為2005元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中央電視臺的“朗讀者”節(jié)目激發(fā)了同學(xué)們的讀書熱情,為了引導(dǎo)學(xué)生“多讀書,讀好書”,某校對八年級部分學(xué)生的課外閱讀量進(jìn)行了隨機調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),學(xué)生課外閱讀的本書最少的有5本,最多的有8本,并根據(jù)調(diào)查結(jié)果繪制了不完整的圖表,如圖所示:
本數(shù)(本) | 頻數(shù)(人數(shù)) | 頻率 |
5 | a | 0.2 |
6 | 18 | 0.36 |
7 | 14 | b |
8 | 8 | 0.16 |
合計 | c | 1 |
(1)統(tǒng)計表中的a= ,b= ,c= ;
(2)請將頻數(shù)分布表直方圖補充完整;
(3)求所有被調(diào)查學(xué)生課外閱讀的平均本數(shù);
(4)若該校八年級共有1200名學(xué)生,請你分析該校八年級學(xué)生課外閱讀7本及以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O在線段AB上,(不與端點A、B重合),以點O為圓心,OA的長為半徑畫弧,線段BP與這條弧相切與點P,直線CD垂直平分PB,交PB于點C,交AB于點D,在射線DC上截取DE,使DE=DB。已知AB=6,設(shè)OA=r。
(1)求證:OP∥ED;
(2)當(dāng)∠ABP=30°時,求扇形AOP的面積,并證明四邊形PDBE是菱形;
(3)過點O作OF⊥DE于點F,如圖所示,線段EF的長度是否隨r的變化而變化?若不變,直接寫出EF的值;若變化,直接寫出EF與r的關(guān)系。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:一輛汽車在一個十字路口遇到紅燈剎車停下,汽車?yán)锏鸟{駛員看地面的斑馬線前后兩端的視角分別是∠DCA=30°和∠DCB=60°,如果斑馬線的寬度是AB=3米,駕駛員與車頭的距離是0.8米,這時汽車車頭與斑馬線的距離x是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線相交于點O,DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若點E到CD的距離為2,CD=3,試求出矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出
(1)如圖1,點A為線段BC外一動點,且BC=a,AB=b,填空:當(dāng)點A位于 時,線段AC的長取得最大值,且最大值為 (用含a,b的式子表示).
問題探究
(2)點A為線段BC外一動點,且BC=6,AB=3,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE,找出圖中與BE相等的線段,請說明理由,并直接寫出線段BE長的最大值.
問題解決:
(3)①如圖3,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(2,0),點B的坐標(biāo)為(5,0),點P為線段AB外一動點,且PA=2,PM=PB,∠BPM=90°,求線段AM長的最大值及此時點P的坐標(biāo).
②如圖4,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若對角線BD⊥CD于點D,請直接寫出對角線AC的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料并解決有關(guān)問題:
我們知道,|m|= .現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對值的代
數(shù)式,如化簡代數(shù)式|m+1|+|m﹣2|時,可令 m+1=0 和 m﹣2=0,分別求得 m=﹣1,m=2(稱﹣1,2 分別為|m+1|與|m﹣2|的零點值).在實數(shù)范圍內(nèi), 零點值 m=﹣1 和 m=2 可將全體實數(shù)分成不重復(fù)且不遺漏的如下 3 種情況:
(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.從而化簡代數(shù)式|m+1|+|m﹣2| 可分以下 3 種情況:
(1)當(dāng) m<﹣1 時,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;
(2)當(dāng)﹣1≤m<2 時,原式=m+1﹣(m﹣2)=3;
(3)當(dāng) m≥2 時,原式=m+1+m﹣2=2m﹣1.
綜上討論,原式=
通過以上閱讀,請你解決以下問題:
(1)分別求出|x﹣5|和|x﹣4|的零點值;
(2)化簡代數(shù)式|x﹣5|+|x﹣4|;
(3)求代數(shù)式|x﹣5|+|x﹣4|的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察等式:;;……,按一定規(guī)律排列的一組數(shù):、、、……、、。若=a,用含a的式子表示這組數(shù)的和是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com