【題目】如圖,在菱形ABCD中,AB=2,∠BAD=60°,將菱形ABCD繞點A逆時針方向旋轉,對應得到菱形AEFG,點E在AC上,EF與CD交于點P,則DP的長是________.
【答案】-1
【解析】
連接AD交AC于O,由菱形的性質得出CD=AB=2,∠BCD=∠BAD=60°,∠ACD=∠BAC=∠BAD=30°,OA=OC,AC⊥BD,由直角三角形性質求出OB=AB=1,OA=OB=,得出AC=2,由旋轉的性質可得AE=AB=2,∠EAG=∠BAD=60°,得出CE=AC﹣AE=2﹣2,證出∠CPE=90°,由直角三角形的性質得出PE=CE=﹣1,PC=PE=3﹣,即可得出結果.
如圖所示,連接BD交AC于O,
∵四邊形ABCD是菱形,
∴CD=AB=2,∠BCD=∠BAD=60°,∠ACD=∠BAC=∠BAD=30°,OA=OC,AC⊥BD,
∴OB=AB=1,
∴OA=OB=,
∴AC=2,
由旋轉的性質得:AE=AB=2,∠EAG=∠BAD=60°,
∴CE=AC﹣AE=2﹣2,
∵四邊形AEFG是菱形,
∴EF∥AG,
∴∠CEP=∠EAG=60°,
∴∠CEP+∠ACD=90°,
∴∠CPE=90°,
∴PE=CE=﹣1,PC=PE=3﹣,
∴DP=CD﹣PC=2﹣(3﹣)=﹣1.
故答案為:﹣1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一段拋物線:y=-x(x-3)(0≤x≤3),記為C1,它與x軸交于兩點O,A1;將C1繞A1旋轉180°得到C2,交x軸于A2;將C2繞A2旋轉180°得到C3,交x軸于A3,過拋物線C1,C3頂點的直線與C1、C2、C3圍成的如圖中的陰影部分,那么該面積為_____________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,點P從A出發(fā)沿AC向C點以1厘米/秒的速度勻速移動;點Q從C出發(fā)沿CB向B點以2厘米/秒的 速度勻速移動.點P、Q分別從起點同時出發(fā),移動到某一位置時所需時間為t秒.
(1)當t= 時,PQ∥AB
(2)當t為何值時,△PCQ的面積等于5cm2?
(3)在P、Q運動過程中,在某一時刻,若將△PQC翻折,得到△EPQ,如圖2,PE與AB能否垂直?若能,求出相應的t值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形OABC的頂點O是坐標原點,點A在第一象限,點C在第四象限,點B在x軸的正半軸上.∠OAB=90°且OA=AB,OB,OC的長分別是一元二次方程的兩個根(OB>OC).
(1)求點A和點B的坐標.
(2)點P是線段OB上的一個動點(點P不與點O,B重合),過點P的直線l與y軸平行,直線l交邊OA或邊AB于點Q,交邊OC或邊BC于點R.設點P的橫坐標為t,線段QR的長度為m.已知t=4時,直線l恰好過點C.當0<t<3時,求m關于t的函數(shù)關系式.
(3)當m=3.5時,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2-4x-3,下列說法中正確的是( )
A.該函數(shù)圖象的開口向下B.該函數(shù)圖象的頂點坐標是(-2,-7)
C.當x<0時,y隨x的增大而增大D.該函數(shù)圖象與x軸有兩個不同的交點,且分布在坐標原點兩側
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c開口向上,與x軸交于點A、B,與y軸交于點C
(1) 如圖1,若A (1,0)、C (0,3)且對稱軸為直線x=2,求拋物線的解析式
(2) 在(1)的條件下,如圖2,作點C關于拋物線對稱軸的對稱點D,連接AD、BD,在拋物線上是否存在點P,使∠PAD=∠ADB,若存在,求出點P的坐標,若不存在,請說明理由
(3) 若直線l:y=mx+n與拋物線有兩個交點M、N(M在N的左邊),Q為拋物線上一點(不與M、N重合),過點Q作QH平行于y軸交直線l于點H,求的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰Rt△ABC中,BA=BC,∠ABC=90°,點D在AC上,將△ABD繞點B沿順時針方向旋轉90°后,得到△CBE.
(1)求∠DCE的度數(shù);
(2)若AB=4,CD=3AD,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠BAC的平分線交△ABC的外接圓于點D,交BC于點P,∠APB=75°,∠BAC=90°,BD=4,求△ABC的外接圓的半徑及∠ADB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線(m為常數(shù))交y軸于點A,與x軸的一個交點在2和3之間,頂點為B.①拋物線與直線有且只有一個交點;②若點、點、點在該函數(shù)圖象上,則;③將該拋物線向左平移2個單位,再向下平移2個單位,所得拋物線解析式為;④點A關于直線的對稱點為C,點D、E分別在x軸和y軸上,當時,四邊形BCDE周長的最小值為.其中正確判斷的序號是__
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com