【題目】如圖,在平面直角坐標系中,四邊形OABC的頂點O是坐標原點,點A在第一象限,點C在第四象限,點Bx軸的正半軸上.∠OAB=90°且OA=AB,OBOC的長分別是一元二次方程的兩個根(OBOC).

1)求點A和點B的坐標.

2)點P是線段OB上的一個動點(點P不與點O,B重合),過點P的直線ly軸平行,直線l交邊OA或邊AB于點Q,交邊OC或邊BC于點R.設點P的橫坐標為t,線段QR的長度為m.已知t=4時,直線l恰好過點C.當0t3時,求m關于t的函數(shù)關系式.

3)當m=3.5時,請直接寫出點P的坐標.

【答案】1A3,3), B6,0);(2m=t0t3);(3P2,0)或(,0).

【解析】

(1)先利用因式分解法解方程可得到OB=6,OC=5,則B點坐標為(6,0),作AMx軸于M,如圖,利用等腰直角三角形的性質(zhì)得OM=BM=AM=OB=3,于是可寫出B點坐標;

(2)作CNx軸于N,如圖,先利用勾股定理計算出CN得到C點坐標為(4,﹣3),再利用待定系數(shù)法分別求出直線OC的解析式為,直線OA的解析式為y=x,則根據(jù)一次函數(shù)圖象上點的坐標特征得到Qt,t),Rt,t),所以QR=t﹣(t),從而得到m關于t的函數(shù)關系式.

(3)利用待定系數(shù)法求出直線AB的解析式為y=﹣x+6,直線BC的解析式為,然后分類討論:當0<t<3時,利用t=3.5可求出t得到P點坐標;

3≤t<4時,則Qt,﹣t+6),Rtt),于是得到﹣t+6﹣(t)=3.5,解得t=10,不滿足t的范圍舍去;當4≤t<6時,則Qt,﹣t+6),Rt,),所以﹣t+6﹣()=3.5,然后解方程求出t得到P點坐標.

(1)∵方程的解為=5,=6,

OB=6,OC=5,

B點坐標為(6,0),

AMx軸于M,如圖,

∵∠OAB=90°OA=AB,

AOB為等腰直角三角形,

OM=BM=AM=OB=3,

A點坐標為(3,3);

(2)作CNx軸于N,如圖,

t=4時,直線l恰好過點C

ON=4,在RtOCN中,CN===3,

C點坐標為(4,﹣3),

設直線OC的解析式為y=kx,把C(4,﹣3)代入得4k=﹣3,解得k=,

∴直線OC的解析式為,設直線OA的解析式為y=ax,

A(3,3)代入得3a=3,解得a=1,

∴直線OA的解析式為y=x

Pt,0)(0<t<3),

Qt,t),Rtt),

QR=t﹣(t)=t,即m=t(0<t<3);

(3)設直線AB的解析式為y=px+q,把A(3,3),B(6,0)代入得,解得,

∴直線AB的解析式為y=﹣x+6,

同理可得直線BC的解析式為;

0<t<3時,m=t

m=3.5,則t=3.5,

解得t=2,此時P點坐標為(2,0);

3≤t<4時,Qt,﹣t+6),Rt,t),

m=﹣t+6﹣(t)=t+6,

m=3.5,則t+6=3.5,

解得t=10(不合題意舍去);

4≤t<6時,Qt,﹣t+6),Rt,),

m=﹣t+6﹣()=t+15,

m=3.5,則t+15=3.5,解得t=

此時P點坐標為(,0),

綜上所述,滿足條件的P點坐標為(2,0)或(,0).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,點,將線段繞著原點逆時針方向旋轉(zhuǎn)角度,連接,將繞著點順時針方向旋轉(zhuǎn)角度,連接.

1)當時,求的長.

2)當時,求的長.

3)已知,當時,改變的大小,求的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校需要添置教師辦公桌椅A、B兩型共200套,已知2A型桌椅和1B型桌椅共需2000元,1A型桌椅和3B型桌椅共需3000元.

(1)求A,B兩型桌椅的單價;

(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要運費10元.設購買A型桌椅x套時,總費用為y元,求yx的函數(shù)關系式,并直接寫出x的取值范圍;

(3)求出總費用最少的購置方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知矩形AOCB,AB=6cm,BC=16cm,動點P從點A出發(fā),以3cm/s的速度向點O運動,直到點O為止;動點Q同時從點C出發(fā),以2cm/s的速度向點B運動,與點P同時結(jié)束運動.

1)當運動時間為2s時,P、Q兩點的距離為   cm;

2)請你計算出發(fā)多久時,點P和點Q之間的距離是10cm;

3)如圖2,以點O為坐標原點,OC所在直線為x軸,OA所在直線為y軸,1cm長為單位長度建立平面直角坐標系,連結(jié)AC,與PQ相交于點D,若雙曲線過點D,問k的值是否會變化?若會變化,說明理由;若不會變化,請求出k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 ABCD中,CD=2AD,BEAD于點E,F(xiàn)DC的中點,連結(jié)EF、BF,下列結(jié)論:①∠ABC=2ABF;EF=BF;S四邊形DEBC=2SEFB;④∠CFE=3DEF,其中正確結(jié)論的個數(shù)共有( ).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,對于點和點,給出如下定義:若,則稱點為點的限變點.例如:點的限變點的坐標是,點的限變點的坐標是

1的限變點的坐標是___________

在點中有一個點是函數(shù)圖象上某一個點的限變點,這個點是_______________

2)若點在函數(shù)的圖象上,其限變點的縱坐標的取值范圍是,求的取值范圍;

3)若點在關于的二次函數(shù)的圖象上,其限變點的縱坐標的取值范圍是,其中.令,求關于的函數(shù)解析式及的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB2,∠BAD60°,將菱形ABCD繞點A逆時針方向旋轉(zhuǎn),對應得到菱形AEFG,點EAC上,EFCD交于點P,則DP的長是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,正方形

1)如圖1,當點分別在邊上,連接,求證:

2)如圖2,點分別在邊上,且,當點分別在,上,連接,請?zhí)骄烤段,之間滿足的數(shù)量關系,并加以證明.

1 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ABBC,點EAB上,DEC90°

1)求證:ADE∽△BEC

2)若AD1BC3,AE2,求AB的長.

查看答案和解析>>

同步練習冊答案