【題目】在矩形中,.分別以所在直線為軸,軸,建立如圖所示的平面直角坐標(biāo)系.點(diǎn)是邊的中點(diǎn),過點(diǎn)的反比例函數(shù)的圖象與邊交于點(diǎn).

1)求的值及點(diǎn)的坐標(biāo);

2)問在軸上是否存在點(diǎn),使得的值最小,若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

【答案】(1),;(2)的坐標(biāo)為

【解析】

1)先根據(jù)題意確定點(diǎn)D的坐標(biāo),再代入反比例函數(shù)解析式中即可求出k的值,然后根據(jù)點(diǎn)EBC邊上即得點(diǎn)E的坐標(biāo);

2)要使的值最小,只需作點(diǎn)關(guān)于軸的對稱點(diǎn),連接軸于點(diǎn),點(diǎn)即為所求,再根據(jù)待定系數(shù)法求出直線的解析式,問題即得解決.

解:(1)由題可知,四邊形是矩形,,.

,,.

∵點(diǎn)的中點(diǎn).

.

將點(diǎn)的坐標(biāo)代入,得.

∵點(diǎn)在邊上,且在反比例函數(shù)上.

.

2)存在點(diǎn)使得的值最小.

由(1)可知點(diǎn),點(diǎn)的坐標(biāo)分別為,作點(diǎn)關(guān)于軸的對稱點(diǎn),連接軸于點(diǎn),則點(diǎn)即為所求.

設(shè)直線的解析式為y=ax+b,則,解得,

直線的解析式為.

當(dāng)y=0時(shí),x=,∴點(diǎn)的坐標(biāo)為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+ca0)的頂點(diǎn)為M,直線ym與拋物線交于點(diǎn)A,B,若AMB為等腰直角三角形,我們把拋物線上AB兩點(diǎn)之間的部分與線段AB 圍成的圖形稱為該拋物線對應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點(diǎn)M 稱為碟頂.

1)由定義知,取AB中點(diǎn)N,連結(jié)MN,MNAB的關(guān)系是_____

2)拋物線y對應(yīng)的準(zhǔn)蝶形必經(jīng)過Bmm),則m_____,對應(yīng)的碟寬AB_____

3)拋物線yax24aa0)對應(yīng)的碟寬在x 軸上,且AB6

①求拋物線的解析式;

②在此拋物線的對稱軸上是否有這樣的點(diǎn)Pxpyp),使得∠APB為銳角,若有,請求出yp的取值范圍.若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

環(huán)視當(dāng)今世界,科技創(chuàng)新已成為發(fā)達(dá)國家保持持久競爭力的“法寶”.研究與試驗(yàn)發(fā)展(R&D)活動的規(guī)模和強(qiáng)度指標(biāo)反映一個(gè)地區(qū)的科技實(shí)力和核心競爭力.

北京市在研究和實(shí)驗(yàn)發(fā)展(R&D)活動中的經(jīng)費(fèi)投入也在逐年增加.2012年北京市全年研究與試驗(yàn)發(fā)展(R&D)經(jīng)費(fèi)投入1031.1億元,比上年增長10.1%.2013年全年研究與試驗(yàn)發(fā)展(R&D)經(jīng)費(fèi)投入1200.7億元.2014年全年研究與試驗(yàn)發(fā)展(R&D)經(jīng)費(fèi)投入1286.6億元.2015年研究與試驗(yàn)發(fā)展(R&D)經(jīng)費(fèi)投入1367.5億元.2016年研究與試驗(yàn)發(fā)展(R&D)經(jīng)費(fèi)投入1479.8億元,相當(dāng)于地區(qū)生產(chǎn)總值的5.94%

(以上數(shù)據(jù)來源于北京市統(tǒng)計(jì)局)

根據(jù)以上材料解答下列問題:

1)用折線統(tǒng)計(jì)圖或者條形統(tǒng)計(jì)圖將20122016年北京市在研究和實(shí)驗(yàn)發(fā)展(R&D)活動中的經(jīng)費(fèi)投入表示出來,并在圖中標(biāo)明相應(yīng)數(shù)據(jù);

2)根據(jù)繪制的統(tǒng)計(jì)圖提供的信息,預(yù)估2017年北京市在研究和實(shí)驗(yàn)發(fā)展(R&D)活動中的經(jīng)費(fèi)投入約為多少億元,寫出你的預(yù)估理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過三點(diǎn).點(diǎn)是拋物線段上一動點(diǎn)(不含端點(diǎn),的延長線交于點(diǎn)

1)求拋物線的解析式.

2)當(dāng)時(shí),求點(diǎn)的坐標(biāo)。

3)在(2)的條件下,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+8x軸交于A、B兩點(diǎn),交y軸于點(diǎn)C,連接BC,且點(diǎn)D坐標(biāo)為(﹣24),tanOBC

1)求拋物線的解析式;

2P為第四象限拋物線上一點(diǎn),連接PCPD,設(shè)點(diǎn)P的橫坐標(biāo)為t,△PCD的面積為S,求St的函數(shù)關(guān)系式;

3)延長CDx軸于點(diǎn)E,連接PE,直線DGx軸交于點(diǎn)G,與PE交于點(diǎn)Q,且OG2,點(diǎn)FDQ上,∠DQE+BCF45°,若FQ2,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD的邊AB上取一點(diǎn)E,連接CE,將△BCE沿CE翻折,點(diǎn)B恰好與對角線AC上的點(diǎn)F重合,連接DF,若BE=2,則△CDF的面積是( 。

A.1B.3C.6D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在△ABC和△ADE中,ABAC,ADAE,∠BAC=∠DAE,過點(diǎn)EEFBC交直線AB于點(diǎn)F,連接CF

(1)如圖1,點(diǎn)DBC上,ABDE交于點(diǎn)G,連接BE.求證:四邊形DCFE是平行四邊形;

(2)如圖2,點(diǎn)DBC的延長線上,若四邊形CDEF是矩形,AC=7,BC=4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年的315日是國際消費(fèi)者權(quán)益日,許多家居商城都會利用這個(gè)契機(jī)進(jìn)行打折促銷活動.甲賣家的A商品成本為600元,在標(biāo)價(jià)1000元的基礎(chǔ)上打8折銷售.

1)現(xiàn)在甲賣家欲繼續(xù)降價(jià)吸引買主,問最多降價(jià)多少元,才能使利潤率不低于20%

2)據(jù)媒體爆料,有一些賣家先提高商品價(jià)格后再降價(jià)促銷,存在欺詐行為.乙賣家也銷售A商品,其成本、標(biāo)價(jià)與甲賣家一致,以前每周可售出50件,現(xiàn)乙賣家先將標(biāo)價(jià)提高2m%,再大幅降價(jià)24m元,使得A商品在315日那一天賣出的數(shù)量就比原來一周賣出的數(shù)量增加了 m%,這樣一天的利潤達(dá)到了20000元,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對于P,Q兩點(diǎn)給出如下定義:若點(diǎn)P到兩坐標(biāo)軸的距離之和等于點(diǎn)Q到兩坐標(biāo)軸的距離之和,則稱PQ兩點(diǎn)為同族點(diǎn).下圖中的P,Q兩點(diǎn)即為同族點(diǎn).

(1)已知點(diǎn)A的坐標(biāo)為(,1),

①在點(diǎn)R(0,4),S(2,2),T(2, )中,為點(diǎn)A的同族點(diǎn)的是 ;

②若點(diǎn)Bx軸上,且A,B兩點(diǎn)為同族點(diǎn),則點(diǎn)B的坐標(biāo)為 ;

(2)直線l ,與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,

M為線段CD上一點(diǎn),若在直線上存在點(diǎn)N,使得MN兩點(diǎn)為同族點(diǎn),求n的取值范圍;

M為直線l上的一個(gè)動點(diǎn),若以(m,0)為圓心, 為半徑的圓上存在點(diǎn)N,使得MN兩點(diǎn)為同族點(diǎn),直接寫出m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案