【題目】如圖,拋物線y=ax2+bx+8與x軸交于A、B兩點(diǎn),交y軸于點(diǎn)C,連接BC,且點(diǎn)D坐標(biāo)為(﹣2,4),tan∠OBC=.
(1)求拋物線的解析式;
(2)P為第四象限拋物線上一點(diǎn),連接PC、PD,設(shè)點(diǎn)P的橫坐標(biāo)為t,△PCD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)延長CD交x軸于點(diǎn)E,連接PE,直線DG與x軸交于點(diǎn)G,與PE交于點(diǎn)Q,且OG=2,點(diǎn)F在DQ上,∠DQE+∠BCF=45°,若FQ=2,求點(diǎn)P的坐標(biāo).
【答案】(1)y=﹣x2+x+8;(2)S=t2+t,(3)P(,).
【解析】
(1)在Rt△OBC中,tan∠OBC==,則OB=6,即可求解;
(2)S=S△PMD﹣S△PMC=PM(xP﹣xD﹣xP)即可求解;
(3)證明FC是∠OCB角平分線,求出點(diǎn)V(,0),點(diǎn)F(3,﹣1)、點(diǎn)Q(5,﹣3),即可求解.
(1)在Rt△OBC中,tan∠OBC==,∴OB=6,
∴點(diǎn)B(6,0),
∴,解得:,
故拋物線的表達(dá)式為:y=x2+x+8…①;
(2)過點(diǎn)P作PM∥y軸交CD延長線于點(diǎn)M,
將D、C的坐標(biāo)代入一次函數(shù)表達(dá)式并解得:
直線DC的表達(dá)式為:y=2x+8,
則點(diǎn)E(﹣4,0),
設(shè)點(diǎn)M(t,2t+8),
則PM=2t+8﹣(t2+t+8)=t2+t,
S=S△PMD﹣S△PMC=PM(xP﹣xD﹣xP)=×2(t2+t)=t2+t,
(3)將點(diǎn)G(2,0)、點(diǎn)D坐標(biāo)代入一次函數(shù)表達(dá)式并解得:
直線DG的表達(dá)式為:y=﹣x+2…②,
∴∠DGA=45°,
過點(diǎn)F作FK⊥y軸于點(diǎn)K,過點(diǎn)Q作QL⊥FK于點(diǎn)L交x軸于點(diǎn)S,直線CF交x軸于點(diǎn)V,
∴∠FQL=∠LFQ=45°,∴FL=QL=FQ=2,
設(shè)點(diǎn)F(m,﹣m+2),則點(diǎn)Q(m+2,﹣m),
tan∠FCK==,tan∠QEB==,
∴∠FCK=∠QEB,
∵∠QEB+∠BCF=45°,∠DQE+∠QEB=45°,
∴∠QEB=∠BCF,∠FCK=∠BCF,
過點(diǎn)V作VR⊥BC于點(diǎn)R,設(shè)OV=n,
則VB=6﹣n,CO=CR=8,則BR=2,
則(6﹣n)2=n2+4,解得:n=,則點(diǎn)V(,0),
將直線C(0,8)、V(,0)坐標(biāo)代入一次函數(shù)表達(dá)式并解得:
直線CV(CF)的表達(dá)式為:y=﹣3x+8…③,
聯(lián)立②③并解得:x=3,則點(diǎn)F(3,﹣1),
而FQ=2,在等腰直角三角形FQL中,
FL=QL=2×=2,
故點(diǎn)Q(5,﹣3),點(diǎn)E(﹣4,0),
同理可得直線EQ的表達(dá)式為:y=x﹣…④,
聯(lián)立①④并解得:x=(舍去負(fù)值),
∴P(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C、D為⊙O上兩點(diǎn),且,過點(diǎn)O作OE⊥AC于點(diǎn)E⊙O的切線AF交OE的延長線于點(diǎn)F,弦AC、BD的延長線交于點(diǎn)G.
(1)求證:∠F=∠B;
(2)若AB=12,BG=10,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮組成團(tuán)隊(duì)參加某科學(xué)比賽.該比賽的規(guī)則是:每輪比賽一名選手參加,若第一輪比賽得分滿60則另一名選手晉級(jí)第二輪,第二輪比賽得分最高的選手所在團(tuán)隊(duì)取得勝利.為了在比賽中取得更好的成績,兩人在賽前分別作了九次測試,如圖為二人測試成績折線統(tǒng)計(jì)圖,下列說法合理的是( )
①小亮測試成績的平均數(shù)比小明的高;②小亮測試成績比小明的穩(wěn)定;③小亮測試成績的中位數(shù)比小明的高;④小亮參加第一輪比賽,小明參加第二輪比賽,比較合理.
A. ①③B. ①④C. ②③D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年南充市有縣區(qū)申報(bào)了長壽之鄉(xiāng),并獲認(rèn)定.上月某中學(xué)九(1)班學(xué)生社會(huì)實(shí)踐前往該區(qū)一鄉(xiāng)鎮(zhèn)調(diào)研進(jìn)入老齡化社會(huì)的數(shù)據(jù).按國際通行標(biāo)準(zhǔn),當(dāng)一個(gè)國家或地區(qū)60及60歲以上人口達(dá)到人口總數(shù)的10%,或65及65歲以上人口達(dá)到人口總數(shù)的7%,這個(gè)區(qū)域進(jìn)入老齡化社會(huì).被調(diào)查的800人年齡情況統(tǒng)計(jì)圖如下:
(1)該鄉(xiāng)鎮(zhèn)是否進(jìn)入老齡化社會(huì)?并說明理由.
(2)請(qǐng)你為該鄉(xiāng)鎮(zhèn)提一條合理化建議.
(3)在該鄉(xiāng)鎮(zhèn)60歲及以上人群中隨機(jī)抽取1人,求年齡不低于70歲的概率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在小正方形的邊長均為1的方格紙中,有線段AB,點(diǎn)A、B均在小正方形的頂點(diǎn)上
(1)在圖1中畫一個(gè)以線段AB為一邊的矩形,點(diǎn)C、D均在小正方形的頂點(diǎn)上,且矩形ABCD的面積為4;
(2)在圖2中畫一個(gè)三角形△ABE,點(diǎn)E在小正方形的頂點(diǎn)上,且△ABE的面積為2,且∠AEB的正切值為,請(qǐng)直接寫出BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形中,,.分別以,所在直線為軸,軸,建立如圖所示的平面直角坐標(biāo)系.點(diǎn)是邊的中點(diǎn),過點(diǎn)的反比例函數(shù)的圖象與邊交于點(diǎn).
(1)求的值及點(diǎn)的坐標(biāo);
(2)問在軸上是否存在點(diǎn),使得的值最小,若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(3,3)、B(﹣1,0)、C(4,0).
(1)經(jīng)過平移,可使△ABC的頂點(diǎn)A與坐標(biāo)原點(diǎn)O重合,則點(diǎn)C的對(duì)應(yīng)點(diǎn)C1的坐標(biāo)為 ;(不用畫圖)
(2)在圖中畫出將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到的△A′BC′;
(3)以點(diǎn)A為位似中心放大△ABC,得到△AB2C2,使S△ABC:S=1:4,在圖中畫出△AB2C2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明利用所學(xué)數(shù)學(xué)知識(shí)測量某建筑物BC高度,采用了如下的方法:小明從與某建筑物底端B在同一水平線上的A點(diǎn)出發(fā),先沿斜坡AD行走260米至坡頂D處,再從D處沿水平方向繼續(xù)前行若干米后至點(diǎn)E處,在E點(diǎn)測得該建筑物頂端C的仰角為72°,建筑物底端B的俯角為63°,其中點(diǎn)A、B、C、D、E在同一平面內(nèi),斜坡AD的坡度i=1:2.4,根據(jù)小明的測量數(shù)據(jù),計(jì)算得出建筑物BC的高度約為( )米(計(jì)算結(jié)果精DE確到0.1米,參考數(shù)據(jù):sin72°≈0.95,tan72°≈3.08,sin63°≈0.89,tan63°≈1.96)
A.157.1 B.157.4 C.257.4 D.257.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,線段AC的垂直平分線交AC于D點(diǎn),交BC于E點(diǎn),過點(diǎn)A作BC的平行線交直線ED于F點(diǎn),連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB=10,∠ACB=30°,求菱形AECF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com