【題目】每年的3月15日是“國際消費者權益日”,許多家居商城都會利用這個契機進行打折促銷活動.甲賣家的A商品成本為600元,在標價1000元的基礎上打8折銷售.
(1)現(xiàn)在甲賣家欲繼續(xù)降價吸引買主,問最多降價多少元,才能使利潤率不低于20%?
(2)據(jù)媒體爆料,有一些賣家先提高商品價格后再降價促銷,存在欺詐行為.乙賣家也銷售A商品,其成本、標價與甲賣家一致,以前每周可售出50件,現(xiàn)乙賣家先將標價提高2m%,再大幅降價24m元,使得A商品在3月15日那一天賣出的數(shù)量就比原來一周賣出的數(shù)量增加了 m%,這樣一天的利潤達到了20000元,求m的值.
【答案】(1)最多降價80元, 才能使利潤率不低于20%;(2)60.
【解析】
(1)設降價x元,則實際售價為”標價×折扣數(shù)-x“,然后根據(jù)題意列出不等式,解得x的取值范圍,然后求出x的最大值即可;
(2)設m%=a(則m=100a),分別表示出降價后一件商品的利潤和銷售數(shù)量,然后利用“一件利潤×銷售數(shù)量=總利潤”列出方程,解方程得m的值即可.
(1)設降價x元,
依題意,得:(1000×0.8-x)≥600×(1+20%),
解得:x≤80.
答:最多降價80元,才能使利潤率不低于20%.
(2)設m%=a,依題意,得:[1000(1+2a)-2400a-600]50(1+a)=20000,
整理,得:5a2-3a=0,
解得:a1=0(舍去),a2=,
∴m%=,
∴m=60.
答:m的值為60.
科目:初中數(shù)學 來源: 題型:
【題目】某中學為開拓學生視野,開展“課外讀書周”活動,活動后期隨機調(diào)查了九年級部分學生一周的課外閱讀時間,并將結果繪制成兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖(圖1)的信息回答下列問題:
(1)本次調(diào)查的學生總數(shù)為________人,被調(diào)查學生的課外閱讀時間的中位數(shù)是________小時,眾數(shù)是_________小時;
(2)請你補全條形統(tǒng)計圖,在扇形統(tǒng)計圖中,課外閱讀時間為小時的扇形的圓心角度數(shù)是_________;
(3)若全校九年級共有學生人,估計九年級一周課外閱讀時間為小時的學生有多少人?
(4)若學校選取、、、四人參加閱讀比賽,兩人一組分為兩組,求與是一組的概率,(列表或樹狀圖)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某旅行團32人在景區(qū)A游玩,他們由成人、少年和兒童組成.已知兒童10人,成人比少年多12人.
(1)求該旅行團中成人與少年分別是多少人?
(2)因時間充裕,該團準備讓成人和少年(至少各1名)帶領10名兒童去另一景區(qū)B游玩.景區(qū)B的門票價格為100元/張,成人全票,少年8折,兒童6折,一名成人可以免費攜帶一名兒童.
①若由成人8人和少年5人帶隊,則所需門票的總費用是多少元?
②若剩余經(jīng)費只有1200元可用于購票,在不超額的前提下,最多可以安排成人和少年共多少人帶隊?求所有滿足條件的方案,并指出哪種方案購票費用最少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明將小球沿與地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度y(m)與它的飛行時間x(s)滿足二次函數(shù)關系,y與x的幾組對應值如下表所示:
x(s) | 0 | 0.5 | 1 | 1.5 | 2 | … |
y(m) | 0 | 8.75 | 15 | 18.75 | 20 | … |
(Ⅰ)求y關于x的函數(shù)解析式(不要求寫x的取值范圍);
(Ⅱ)問:小球的飛行高度能否達到22m?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明利用所學數(shù)學知識測量某建筑物BC高度,采用了如下的方法:小明從與某建筑物底端B在同一水平線上的A點出發(fā),先沿斜坡AD行走260米至坡頂D處,再從D處沿水平方向繼續(xù)前行若干米后至點E處,在E點測得該建筑物頂端C的仰角為72°,建筑物底端B的俯角為63°,其中點A、B、C、D、E在同一平面內(nèi),斜坡AD的坡度i=1:2.4,根據(jù)小明的測量數(shù)據(jù),計算得出建筑物BC的高度約為( )米(計算結果精DE確到0.1米,參考數(shù)據(jù):sin72°≈0.95,tan72°≈3.08,sin63°≈0.89,tan63°≈1.96)
A.157.1 B.157.4 C.257.4 D.257.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C = 90°, P是CB邊上一動點,連接AP,作PQ⊥AP交AB于Q . 已知AC = 3cm,BC = 6cm,設PC的長度為xcm,BQ的長度為ycm .
小青同學根據(jù)學習函數(shù)的經(jīng)驗對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小青同學的探究過程,請補充完整:
(1) 按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y的幾組對應值;
x/cm | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 6 |
y/cm | 0 | 1.56 | 2.24 | 2.51 | m | 2.45 | 2.24 | 1.96 | 1.63 | 1.26 | 0.86 | 0 |
(說明:補全表格時,相關數(shù)據(jù)保留一位小數(shù))
m的值約為多少cm;
(2)在平面直角坐標系中,描出以補全后的表格中各組數(shù)值所對應的點(x ,y),畫出該函數(shù)的圖象;
(3)結合畫出的函數(shù)圖象,解決問題:
①當y > 2時,寫出對應的x的取值范圍;
②若點P不與B,C兩點重合,是否存在點P,使得BQ=BP?(直接寫結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綠色無公害蔬菜基地有甲、乙兩種植戶,他們種植了兩類蔬菜,兩種植戶種植的兩類蔬菜的種植面積與總收入如下表:
種植戶 | 種植類蔬菜面積(單位:畝) | 種植類蔬菜面積(單位:畝) | 總收入(單位:元) |
甲 | |||
乙 |
說明:不同種植戶種植的同類蔬菜每畝的平均收入相等;畝為土地面積單位
求兩類蔬菜每畝的平均收入各是多少元?
某種植戶準備租畝地用來種植兩類蔬菜,為了使總收入不低于元且種植類蔬菜的面積多于種植類蔬菜的面積(兩類蔬菜的種植面積均為整數(shù)),求該種植戶所有租地方案;
在的基礎上,指出哪種方案使總收入最大,并求出最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“最美女教師”張麗莉,為搶救兩名學生,以致雙腿高位截肢,社會各界紛紛為她捐款,我市某中學九年級一班全體同學參加了捐款活動,該班同學捐款情況的部分統(tǒng)計圖如圖所示:
(1)求該班的總人數(shù);
(2)將條形圖補充完整,并寫出捐款總額的眾數(shù);
(3)該班平均每人捐款多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com