【題目】為推進“傳統(tǒng)文化進校園”活動,我市某中學(xué)舉行了“走進經(jīng)典”征文比賽,賽后整理參賽學(xué)生的成績,將學(xué)生的成績分為四個等級,并將結(jié)果繪制成不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.請根據(jù)統(tǒng)計圖解答下列問題:
(1)參加征文比賽的學(xué)生共有 人;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,表示等級的扇形的圓心角為__ 圖中 ;
(4)學(xué)校決定從本次比賽獲得等級的學(xué)生中選出兩名去參加市征文比賽,已知等級中有男生一名,女生兩名,請用列表或畫樹狀圖的方法求出所選兩名學(xué)生恰好是一名男生和一名女生的概率.
【答案】(1)30;(2)圖見解析;(3)144°,30;(4) .
【解析】
(1)根據(jù)等級為A的人數(shù)除以所占的百分比即可求出總?cè)藬?shù);
(2)根據(jù)條形統(tǒng)計圖得出A、C、D等級的人數(shù),用總?cè)藬?shù)減A、C、D等級的人數(shù)即可;
(3)計算C等級的人數(shù)所占總?cè)藬?shù)的百分比,即可求出表示等級的扇形的圓心角和的值;
(4)利用列表法或樹狀圖法得出所有等可能的情況數(shù),找出一名男生和一名女生的情況數(shù),即可求出所求的概率.
解:(1)根據(jù)題意得成績?yōu)?/span>A等級的學(xué)生有3人,所占的百分比為10%,
則3÷10%=30,
即參加征文比賽的學(xué)生共有30人;
(2)由條形統(tǒng)計圖可知A、C、D等級的人數(shù)分別為3人、12人、6人,
則303126=9(人),即B等級的人數(shù)為9人
補全條形統(tǒng)計圖如下圖
(3),
,∴m=30
(4)依題意,列表如下:
男 | 女 | 女 | |
男 | (男,女) | (男,女) | |
女 | (男,女) | (女,女) | |
女 | (男,女) | (女,女) |
由上表可知總共有6種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,其中所選兩名學(xué)生恰好是一男一女的結(jié)果共有4種,
所以;
或樹狀圖如下
由上圖可知總共有6種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,其中所選兩名學(xué)生恰好是一男一女的結(jié)果共有4種,
所以.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠DAB=60°,AB=5,BC=3,點P從點D出發(fā),沿DC,CB向終點B勻速運動.設(shè)點P所走過的路程為x,點P所經(jīng)過的線段與AD,AP所圍成的圖形的面積為y,y隨x的變化而變化.在下列圖象中,能正確反映y與x的函數(shù)關(guān)系的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,四邊形OACB為菱形,OB在x軸的正半軸上,∠AOB=60°,過點A的反比例函數(shù)y= 的圖像與BC交于點F,則△AOF的面積為 ______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,點D是AB的中點,點P是直線BC上一點,將△BDP沿DP所在的直線翻折后,點B落在B1處,若B1D⊥BC,則點P與點B之間的距離為( )
A.1B.C.1或 3D.或5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為A(1,0),等腰直角三角形ABC的邊AB在x軸的正半軸上,∠ABC=90°,點B在點A的右側(cè),點C在第一象限.將△ABC繞點A逆時針旋轉(zhuǎn),
(1)若=75°,如果點C的對應(yīng)點E恰好落在軸的正半軸上,求AB的長;
(2)若旋轉(zhuǎn)°后,有DE∥AC,且點B的對應(yīng)點D也恰好落在軸的正半軸上,求DC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題情境:如圖1,已知等腰直角中,,,是上的一點,且,過作于,取中點,連接,則的長為_______(請直接寫出答案)
小明采用如下的做法:
延長到,使,連接,
為中點,為的中點,
是的中位線……
請你根據(jù)小明的思路完成上面填空;
(2)遷移應(yīng)用:將圖1中的繞點作順時針旋轉(zhuǎn),當(dāng)時,試探究、、的數(shù)量關(guān)系,并證明你的結(jié)論.
(3)拓展延伸:在旋轉(zhuǎn)的過程中,當(dāng)、、三點共線時,直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+2與x軸交于點A(﹣1,0)和點B(2,0),與y軸交于點C.
(1)求該拋物線的函數(shù)解析式;
(2)如圖1,連接BC,點D是BC上方拋物線上的動點,連接OD、CD,OD交BC于點F,當(dāng)時,求的值;
(3)如圖2,點E的坐標(biāo)為,在拋物線上是否存在點P,使∠OBP=2∠OBE?若存在,請求出符合條件的點P的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)圖象的頂點為D,其圖象與x軸的交點A,B的橫坐標(biāo)分別為﹣1,3,與y軸負(fù)半軸交于點C.以下五個結(jié)論:①2a+b=0;②a+b+c>0;③4a+b+c>0;④只有當(dāng)a=時,△ABD是等腰直角三角形;⑤使△ACB為等腰三角形的a的值可以有兩個.那么,其中正確的結(jié)論是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】劉雨澤和黎昕兩位同學(xué)玩抽數(shù)字游戲.五張卡片上分別寫有2、4、6、8、這五個數(shù)字,其中兩張卡片上的數(shù)字是相同的,從中隨機抽出一張,已知(抽到數(shù)字4的卡片).
(1)求這五張卡片上的數(shù)字的眾數(shù);
(2)若劉雨澤已抽走一張數(shù)字2的卡片,黎昕準(zhǔn)備從剩余4張卡片中抽出一張.
①所剩的4張卡片上數(shù)字的中位數(shù)與原來5張卡片上數(shù)字的中位數(shù)是否相同?并簡要說明理由;
②黎昕先隨機抽出一張卡片后放回,之后又隨機抽出一張,用列表法(或樹狀圖)求黎昕兩次都抽到數(shù)字4的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com