【題目】為推進(jìn)“傳統(tǒng)文化進(jìn)校園”活動(dòng),我市某中學(xué)舉行了“走進(jìn)經(jīng)典”征文比賽,賽后整理參賽學(xué)生的成績(jī),將學(xué)生的成績(jī)分為四個(gè)等級(jí),并將結(jié)果繪制成不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:

1)參加征文比賽的學(xué)生共有 人;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)在扇形統(tǒng)計(jì)圖中,表示等級(jí)的扇形的圓心角為__ 圖中

4)學(xué)校決定從本次比賽獲得等級(jí)的學(xué)生中選出兩名去參加市征文比賽,已知等級(jí)中有男生一名,女生兩名,請(qǐng)用列表或畫樹狀圖的方法求出所選兩名學(xué)生恰好是一名男生和一名女生的概率.

【答案】130;(2)圖見(jiàn)解析;(3144°,30;(4

【解析】

1)根據(jù)等級(jí)為A的人數(shù)除以所占的百分比即可求出總?cè)藬?shù);

2)根據(jù)條形統(tǒng)計(jì)圖得出AC、D等級(jí)的人數(shù),用總?cè)藬?shù)減AC、D等級(jí)的人數(shù)即可;

3)計(jì)算C等級(jí)的人數(shù)所占總?cè)藬?shù)的百分比,即可求出表示等級(jí)的扇形的圓心角和的值;

4)利用列表法或樹狀圖法得出所有等可能的情況數(shù),找出一名男生和一名女生的情況數(shù),即可求出所求的概率.

解:(1)根據(jù)題意得成績(jī)?yōu)?/span>A等級(jí)的學(xué)生有3人,所占的百分比為10%

3÷10%=30,

即參加征文比賽的學(xué)生共有30人;

2)由條形統(tǒng)計(jì)圖可知A、C、D等級(jí)的人數(shù)分別為3人、12人、6人,

303126=9(人),即B等級(jí)的人數(shù)為9

補(bǔ)全條形統(tǒng)計(jì)圖如下圖

3

,∴m=30

4)依題意,列表如下:

(男,女)

(男,女)

(男,女)

(女,女)

(男,女)

(女,女)

由上表可知總共有6種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,其中所選兩名學(xué)生恰好是一男一女的結(jié)果共有4種,

所以

或樹狀圖如下

由上圖可知總共有6種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,其中所選兩名學(xué)生恰好是一男一女的結(jié)果共有4種,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠DAB=60°,AB=5,BC=3,點(diǎn)P從點(diǎn)D出發(fā),沿DC,CB向終點(diǎn)B勻速運(yùn)動(dòng).設(shè)點(diǎn)P所走過(guò)的路程為x,點(diǎn)P所經(jīng)過(guò)的線段與AD,AP所圍成的圖形的面積為y,yx的變化而變化.在下列圖象中,能正確反映yx的函數(shù)關(guān)系的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,四邊形OACB為菱形,OBx軸的正半軸上,∠AOB=60°,過(guò)點(diǎn)A的反比例函數(shù)y= 的圖像與BC交于點(diǎn)F,則AOF的面積為 ______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C90°,AC3,BC4,點(diǎn)DAB的中點(diǎn),點(diǎn)P是直線BC上一點(diǎn),將△BDP沿DP所在的直線翻折后,點(diǎn)B落在B1處,若B1DBC,則點(diǎn)P與點(diǎn)B之間的距離為(  )

A.1B.C.1 3D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為A(1,0),等腰直角三角形ABC的邊ABx軸的正半軸上,∠ABC90°,點(diǎn)B在點(diǎn)A的右側(cè),點(diǎn)C在第一象限.將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),

1)若75°,如果點(diǎn)C的對(duì)應(yīng)點(diǎn)E恰好落在軸的正半軸上,求AB的長(zhǎng);

2)若旋轉(zhuǎn)°后,有DEAC,且點(diǎn)B的對(duì)應(yīng)點(diǎn)D也恰好落在軸的正半軸上,求DC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)問(wèn)題情境:如圖1,已知等腰直角中,,,上的一點(diǎn),且,過(guò),取中點(diǎn),連接,則的長(zhǎng)為_______(請(qǐng)直接寫出答案)

小明采用如下的做法:

延長(zhǎng),使,連接,

中點(diǎn),的中點(diǎn),

的中位線……

請(qǐng)你根據(jù)小明的思路完成上面填空;

2)遷移應(yīng)用:將圖1中的繞點(diǎn)作順時(shí)針旋轉(zhuǎn),當(dāng)時(shí),試探究、的數(shù)量關(guān)系,并證明你的結(jié)論.

3)拓展延伸:在旋轉(zhuǎn)的過(guò)程中,當(dāng)、三點(diǎn)共線時(shí),直接寫出線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+2x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(2,0),與y軸交于點(diǎn)C

1)求該拋物線的函數(shù)解析式;

2)如圖1,連接BC,點(diǎn)DBC上方拋物線上的動(dòng)點(diǎn),連接OD、CDODBC于點(diǎn)F,當(dāng)時(shí),求的值;

3)如圖2,點(diǎn)E的坐標(biāo)為,在拋物線上是否存在點(diǎn)P,使∠OBP2∠OBE?若存在,請(qǐng)求出符合條件的點(diǎn)P的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ca≠0)圖象的頂點(diǎn)為D,其圖象與x軸的交點(diǎn)AB的橫坐標(biāo)分別為﹣1,3,與y軸負(fù)半軸交于點(diǎn)C.以下五個(gè)結(jié)論:①2a+b0;②a+b+c0;③4a+b+c0;④只有當(dāng)a時(shí),ABD是等腰直角三角形;⑤使ACB為等腰三角形的a的值可以有兩個(gè).那么,其中正確的結(jié)論是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】劉雨澤和黎昕?jī)晌煌瑢W(xué)玩抽數(shù)字游戲.五張卡片上分別寫有2、4、68這五個(gè)數(shù)字,其中兩張卡片上的數(shù)字是相同的,從中隨機(jī)抽出一張,已知(抽到數(shù)字4的卡片)

1)求這五張卡片上的數(shù)字的眾數(shù);

2)若劉雨澤已抽走一張數(shù)字2的卡片,黎昕準(zhǔn)備從剩余4張卡片中抽出一張.

①所剩的4張卡片上數(shù)字的中位數(shù)與原來(lái)5張卡片上數(shù)字的中位數(shù)是否相同?并簡(jiǎn)要說(shuō)明理由;

②黎昕先隨機(jī)抽出一張卡片后放回,之后又隨機(jī)抽出一張,用列表法(或樹狀圖)求黎昕?jī)纱味汲榈綌?shù)字4的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案