【題目】劉雨澤和黎昕?jī)晌煌瑢W(xué)玩抽數(shù)字游戲.五張卡片上分別寫(xiě)有24、6、8這五個(gè)數(shù)字,其中兩張卡片上的數(shù)字是相同的,從中隨機(jī)抽出一張,已知(抽到數(shù)字4的卡片)

1)求這五張卡片上的數(shù)字的眾數(shù);

2)若劉雨澤已抽走一張數(shù)字2的卡片,黎昕準(zhǔn)備從剩余4張卡片中抽出一張.

①所剩的4張卡片上數(shù)字的中位數(shù)與原來(lái)5張卡片上數(shù)字的中位數(shù)是否相同?并簡(jiǎn)要說(shuō)明理由;

②黎昕先隨機(jī)抽出一張卡片后放回,之后又隨機(jī)抽出一張,用列表法(或樹(shù)狀圖)求黎昕?jī)纱味汲榈綌?shù)字4的概率.

【答案】14;(2)①不同,理由見(jiàn)解析;②

【解析】

1)根據(jù)抽到數(shù)字4的卡片的概率為可得x值,從而可得眾數(shù);

2)①分別求出前后兩次的中位數(shù)即可;

②畫(huà)出樹(shù)狀圖,再根據(jù)概率公式求解即可.

解:(1)∵24、68、這五個(gè)數(shù)字中,

(抽到數(shù)字4的卡片)

則數(shù)字4的卡片有2張,即x=4,

∴五個(gè)數(shù)字分別為2、44、6、8

則眾數(shù)為:4;

2)①不同,理由是:

原來(lái)五個(gè)數(shù)字的中位數(shù)為:4,

抽走數(shù)字2后,剩余數(shù)字為4、46、8

則中位數(shù)為:,

∴前后兩次的中位數(shù)不一樣;

②由題意可得:

可得共有16種等可能的結(jié)果,其中兩次都抽到數(shù)字4的情況有4種,

∴黎昕?jī)纱味汲榈綌?shù)字4的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為推進(jìn)“傳統(tǒng)文化進(jìn)校園”活動(dòng),我市某中學(xué)舉行了“走進(jìn)經(jīng)典”征文比賽,賽后整理參賽學(xué)生的成績(jī),將學(xué)生的成績(jī)分為四個(gè)等級(jí),并將結(jié)果繪制成不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:

1)參加征文比賽的學(xué)生共有 人;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)在扇形統(tǒng)計(jì)圖中,表示等級(jí)的扇形的圓心角為__ 圖中 ;

4)學(xué)校決定從本次比賽獲得等級(jí)的學(xué)生中選出兩名去參加市征文比賽,已知等級(jí)中有男生一名,女生兩名,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出所選兩名學(xué)生恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為進(jìn)一步提升學(xué)生的法律素質(zhì),中學(xué)組織學(xué)生開(kāi)展《憲法》知識(shí)競(jìng)賽,該學(xué)校隨機(jī)抽取部分學(xué)生的成績(jī)并進(jìn)行統(tǒng)計(jì)分析,以了解學(xué)生的法律知識(shí)水平.根據(jù)這些學(xué)生的競(jìng)賽成績(jī)分布情況,將競(jìng)賽成績(jī)分為甲、乙、丙、丁、戊五個(gè)等級(jí).圖表如下:

等級(jí)

分?jǐn)?shù)/

頻數(shù)

各組總分/

39

2184

75

5175

120

9720

4050

21

2037

1)求的值;

2)競(jìng)賽成績(jī)的中位數(shù)落在哪個(gè)等級(jí)?

3)求這組競(jìng)賽成績(jī)的平均值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將兩個(gè)全等的直角三角形ABC和DBE按圖①方式擺放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,點(diǎn)E落在AB上,DE所在直線交AC所在直線于點(diǎn)F.

(1)求證:AF+EF=DE;

(2)若將圖①中的△DBE繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)角α,且0°<α<60°,其它條件不變,請(qǐng)?jiān)趫D②中畫(huà)出變換后的圖形,并直接寫(xiě)出你在(1)中猜想的結(jié)論是否仍然成立;

(3)若將圖①中的△DBE繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)角β,且60°<β<180°,其它條件不變,如圖③.你認(rèn)為(1)中猜想的結(jié)論還成立嗎?若成立,寫(xiě)出證明過(guò)程;若不成立,請(qǐng)寫(xiě)出AF、EF與DE之間的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某產(chǎn)品每件成本10元,試銷階段每件產(chǎn)品的銷售價(jià)x(元)與產(chǎn)品的日銷售量y(件)之間的關(guān)系如圖.


1)求日銷售量y(件)與每件產(chǎn)品的銷售價(jià)x(元)之間的函數(shù)表達(dá)式;

2)當(dāng)每件產(chǎn)品的銷售價(jià)定為多少元時(shí),此時(shí)每日的銷售利潤(rùn)最多,最多是多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】河南省開(kāi)封市鐵塔始建于公元1049年(北宋皇祐元年),是國(guó)家重點(diǎn)保護(hù)文物之一,在900多年中,歷經(jīng)了數(shù)次地震、大風(fēng)、水患而巍然屹立,素有“天下第一塔”之稱.如圖,小明在鐵塔一側(cè)的水平面上一個(gè)臺(tái)階的底部A處測(cè)得塔頂P的仰角為45°,走到臺(tái)階頂部B處,又測(cè)得塔頂P的仰角為38.7°,已知臺(tái)階的總高度BC3米,總長(zhǎng)度AC10米,試求鐵塔的高度.(結(jié)果精確到1米,參考數(shù)據(jù):sin38.7°≈0.63,cos38.7°≈0.78,tan38.7°≈0.80

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系,拋物線的圖象與軸交于兩點(diǎn),與軸交于點(diǎn)

       

       備用圖

1)求拋物線的解析式.

2)點(diǎn)是直線上方的拋物線上一點(diǎn),連接、,軸交于

①點(diǎn)軸上一動(dòng)點(diǎn),連接,當(dāng)以、為頂點(diǎn)的三角形與相似時(shí),求出線段的長(zhǎng);

②點(diǎn)軸左側(cè)拋物線上一點(diǎn),過(guò)點(diǎn)作直線的垂線,垂足為,若,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線經(jīng)過(guò)點(diǎn),,直線軸于點(diǎn),且與拋物線交于、兩點(diǎn).為拋物線上一動(dòng)點(diǎn)(不與點(diǎn),重合).

1)求拋物線的解析式;

2)當(dāng)點(diǎn)在直線上方時(shí),過(guò)點(diǎn)軸交于點(diǎn),軸交于點(diǎn),求的最大值;

3)設(shè)為直線上的點(diǎn),以,為頂點(diǎn)的四邊形能否構(gòu)成平行四邊形?若能,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有4張正面分別寫(xiě)有數(shù)字1、2、3、4的卡片,將4張卡片的背面朝上,洗勻.

1)若從中任意抽取1張,抽的卡片上的數(shù)字恰好為3的概率是________;

2)若先從中任意抽取1張(不放回),再?gòu)挠嘞碌?/span>3張中任意抽取1張,求抽得的2張卡片上的數(shù)字之和為3的倍數(shù)的概率.(請(qǐng)用“畫(huà)樹(shù)狀圖”或“列表”等方法寫(xiě)出分析過(guò)程)

查看答案和解析>>

同步練習(xí)冊(cè)答案