【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).

(1)求證:△ADE≌△CBF;

(2)求證:四邊形BFDE為矩形.

【答案】(1)證明見解析;(2)證明見解析.

【解析】試題分析:(1)由DEAB垂直,BFCD垂直,得到一對直角相等,再由ABCD為平行四邊形得到AD=BC,對角相等,利用AAS即可的值;

2)由平行四邊形的對邊平行得到DCAB平行,得到∠CDE為直角,利用三個角為直角的四邊形為矩形即可的值.

試題解析:(1∵DE⊥AB,BF⊥CD,

∴∠AED=∠CFB=90°

四邊形ABCD為平行四邊形,

∴AD=BC,∠A=∠C,

△ADE△CBF中,

,

∴△ADE≌△CBFAAS);

2四邊形ABCD為平行四邊形,

∴CD∥AB,

∴∠CDE+∠DEB=180°

∵∠DEB=90°,

∴∠CDE=90°,

∴∠CDE=∠DEB=∠BFD=90°

則四邊形BFDE為矩形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC(網(wǎng)格中每個小正方形的邊長均為1).

1)三個頂點坐標分別為:A   ,B   C   ;

2)求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知某山區(qū)的平均氣溫與該山的海拔高度的關(guān)系見下表:

海拔高度(單位:米)

0

100

200

300

400

平均氣溫(單位:℃)

22

21.5

21

20.5

20


(1)若海拔高度用x(米)表示,平均氣溫用y(℃)表示,試寫出y與x之間的函數(shù)關(guān)系式;
(2)若某種植物適宜生長在18℃~20℃(包含18℃,也包含20℃)山區(qū),請問該植物適宜種植在海拔為多少米的山區(qū)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下面的證明

如圖FG//CD,∠1=∠3,∠B=50°,求BDE的度數(shù).

:∵FG//CD (已知)

∴∠2=_________(____________________________)

又∵∠1=∠3,

∴∠3=∠2(等量代換)

BC//__________(_____________________________)

∴∠B+________=180°(______________________________)

又∵∠B=50°

∴∠BDE=________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A、C分別在x軸上、y軸上,CB//OA,OA=8,若點B的坐標為(a,b),b=.

(1)直接寫出點A、B、C的坐標;

(2)若動點P從原點O出發(fā)沿x軸以每秒2個單位長度的速度向右運動,當直線PC把四邊形OABC分成面積相等的兩部分停止運動,求P點運動時間

(3)在(2)的條件下,在y軸上是否存在一點Q,連接PQ,使三角形CPQ的面積與四邊形OABC的面積相等?若存在,求點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的對角線相交于點O,點O也是正方形A′B′C′O的一個頂點,如果兩個正方形的邊長都等于1,那么正方形A′B′C′O繞頂點O轉(zhuǎn)動,兩個正方形重疊部分的面積大小有什么規(guī)律?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為積極響應(yīng)政府提出的綠色發(fā)展·低碳出行號召,某社區(qū)決定購置一批共享單車.經(jīng)市場調(diào)查得知,購買6輛男式單車與8輛女式單車費用相同,購買5輛男式單車與4輛女式單車共需16 000元.

(1)求男式單車和女式單車的單價;

(2)該社區(qū)要求男式單車比女式單車多5輛,兩種單車至少需要22輛,購置兩種單車的費用不超過50 000元,該社區(qū)有幾種購置方案?怎樣購置才能使所需總費用最低,最低費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完善下列解題步驟,并說明解題依據(jù).

如圖,已知,,求證:

證明:(已知),

_____________________),

_____________________),

___________)(________________),

______)(______________________),

(已知),

_______

___________________).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,P是CD邊上一點,且AP和BP分別平分∠DAB和∠CBA,若AD=5,AP=8,則△APB的周長是

查看答案和解析>>

同步練習冊答案