【題目】某“綜合與實(shí)踐”小組開(kāi)展了測(cè)量本校旗桿高度的實(shí)踐活動(dòng),他們制訂了測(cè)量方案,并利用課余時(shí)間完成了實(shí)地測(cè)量.他們?cè)谄鞐U底部所在的平地上,選取兩個(gè)不同測(cè)點(diǎn),分別測(cè)量了該旗桿頂端的仰角以及這兩個(gè)測(cè)點(diǎn)之間的距離.為了減小測(cè)量誤差,小組在測(cè)量仰角的度數(shù)以及兩個(gè)測(cè)點(diǎn)之間的距離時(shí),都分別測(cè)量了兩次并取它們的平均值作為測(cè)量結(jié)果,測(cè)量數(shù)據(jù)如下表(不完整)
任務(wù)一:兩次測(cè)量A,B之間的距離的平均值是 m.
任務(wù)二:根據(jù)以上測(cè)量結(jié)果,請(qǐng)你幫助“綜合與實(shí)踐”小組求出學(xué)校學(xué)校旗桿GH的高度.
(參考數(shù)據(jù):sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
任務(wù)三:該“綜合與實(shí)踐”小組在定制方案時(shí),討論過(guò)“利用物體在陽(yáng)光下的影子測(cè)量旗桿的高度”的方案,但未被采納.你認(rèn)為其原因可能是什么?(寫出一條即可).
【答案】任務(wù)一:5.5;任務(wù)二:旗桿GH的高度為14.7m;任務(wù)三:見(jiàn)解析.
【解析】
任務(wù)一:利用平均數(shù)公式進(jìn)行計(jì)算即可得;
任務(wù)二:由題意可得:四邊形ACDB,四邊形ACEH都是矩形,則有EH=AC=1.5,CD=AB=5.5,設(shè)EG=x m,在Rt△DEG中,利用∠GDE的正切可得,在Rt△CEG中,利用∠GCE的正切可得CE=,再根據(jù)CD=CE-DE,可求得x的值,再根據(jù)GH=CE+EH即可求得答案;
任務(wù)三:寫出的理由只要合理即可.
任務(wù)一:=5.5(m),
故答案為:5.5;
任務(wù)二:由題意可得:四邊形ACDB,四邊形ACEH都是矩形,
∴EH=AC=1.5,CD=AB=5.5,
設(shè)EG=x m,
在Rt△DEG中,∠DEC=90°,∠GDE=31°,
∵tan31°=,∴,
在Rt△CEG中,∠CEG=90°,∠GCE=25.7°,
∵tan25.7°=,∴CE=,
∵CD=CE-DE,
∴,
∴,
∴GH=CE+EH=13.2+1.5=14.7,
答:旗桿GH的高度為14.7m;
任務(wù)三:答案不唯一:沒(méi)有太陽(yáng)光,旗桿底部不可到達(dá),測(cè)量旗桿影子的長(zhǎng)度遇到困難等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某校準(zhǔn)備成立四個(gè)活動(dòng)小組:.聲樂(lè),.體育,.舞蹈,.書畫,為了解學(xué)生對(duì)四個(gè)活動(dòng)小組的喜愛(ài)情況,隨機(jī)選取該校部分學(xué)生進(jìn)行調(diào)查,要求每名學(xué)生從中必須選擇而且只能選擇一個(gè)小組,根據(jù)調(diào)查結(jié)果繪制如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)結(jié)合圖中所給信息,解答下列問(wèn)題:
(1)本次抽樣調(diào)查共抽查了 名學(xué)生,扇形統(tǒng)計(jì)圖中的值是 ;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)喜愛(ài)“書畫”的學(xué)生中有兩名男生和兩名女生表現(xiàn)特別優(yōu)秀,現(xiàn)從這4人中隨機(jī)選取兩人參加比賽,請(qǐng)用列表或畫樹(shù)狀圖的方法求出所選的兩人恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,△ABC與△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且點(diǎn)D在AB邊上,AB、EF的中點(diǎn)均為O,連結(jié)BF、CD、CO,顯然點(diǎn)C, F, O在同一條直線上,可以證明△BOF≌△COD,則BF=CD,
解決問(wèn)題
(1)將圖①中的Rt△DEF繞點(diǎn)O旋轉(zhuǎn)得到圖②,猜想此時(shí)線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點(diǎn)均為O,上述(1)中的結(jié)論仍然成立嗎?如果成立,請(qǐng)說(shuō)明理由;如不成立,請(qǐng)求出BF與CD之間的數(shù)量關(guān)系;
(3)如圖④,若△ABC與△DEF都是等腰三角形,AB、EF的中點(diǎn)均為0,且頂角∠ACB=∠EDF=α,請(qǐng)直接寫出 的值(用含α的式子表示出來(lái))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,將矩形紙片OABC放置在直角坐標(biāo)系中,點(diǎn)A(3,0),點(diǎn)C(0,).
(I).如圖,經(jīng)過(guò)點(diǎn)O、B折疊紙片,得折痕OB,點(diǎn)A的對(duì)應(yīng)點(diǎn)為,求的度數(shù);
(Ⅱ)如圖,點(diǎn)M、N分別為邊OA、BC上的動(dòng)點(diǎn),經(jīng)過(guò)點(diǎn)M、N折疊紙片,得折痕MN,點(diǎn)B的對(duì)應(yīng)點(diǎn)為
①當(dāng)點(diǎn)B的坐標(biāo)為(-1,0)時(shí),請(qǐng)你判斷四邊形的形狀,并求出它的周長(zhǎng);
②若點(diǎn)N與點(diǎn)C重合,當(dāng)點(diǎn)落在坐標(biāo)軸上時(shí),直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】北中環(huán)橋是省城太原的一座跨汾河大橋(如圖1),它由五個(gè)高度不同,跨徑也不同的拋物線型鋼拱通過(guò)吊橋,拉鎖與主梁相連,最高的鋼拱如圖2所示,此鋼拱(近似看成二次函數(shù)的圖象-拋物線)在同一豎直平面內(nèi),與拱腳所在的水平面相交于A,B兩點(diǎn),拱高為78米(即最高點(diǎn)O到AB的距離為78米),跨徑為90米(即AB=90米),以最高點(diǎn)O為坐標(biāo)原點(diǎn),以平行于AB的直線為軸建立平面直角坐標(biāo)系,則此拋物線鋼拱的函數(shù)表達(dá)式為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC=2,∠B=30°,△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0<α<120°)得到,與BC,AC分別交于點(diǎn)D,E.設(shè),的面積為,則與的函數(shù)圖象大致為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)國(guó)家“足球進(jìn)校園”的號(hào)召,某校購(gòu)買了50個(gè)類足球和25個(gè)類足球共花費(fèi)7500元,已知購(gòu)買一個(gè)類足球比購(gòu)買一個(gè)類足球多花30元.
(1)求購(gòu)買一個(gè)類足球和一個(gè)類足球各需多少元?
(2)通過(guò)全校師生的共同努力,今年該校被評(píng)為“足球特色學(xué)!,學(xué)校計(jì)劃用不超過(guò)4800元的經(jīng)費(fèi)再次購(gòu)買類足球和類足球共50個(gè),若單價(jià)不變,則本次至少可以購(gòu)買多少個(gè)類足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線交軸于點(diǎn),交軸于點(diǎn),點(diǎn)的坐標(biāo)為,拋物線經(jīng)過(guò)三點(diǎn),拋物線的頂點(diǎn)為點(diǎn),對(duì)稱軸與軸的交點(diǎn)為點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,連接,以點(diǎn)為圓心,的長(zhǎng)為半徑作圓,點(diǎn)為直線上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)求周長(zhǎng)的最小值;
(3)若動(dòng)點(diǎn)與點(diǎn)不重合,點(diǎn)為⊙上的任意一點(diǎn),當(dāng)的最大值等于時(shí),過(guò)兩點(diǎn)的直線與拋物線交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為4,點(diǎn)是的中點(diǎn),平分交于點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得,則的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com