【題目】如圖是二次函數(shù)圖像的一部分,對稱軸是直線x=2.關(guān)于下列結(jié)論:①ab<0;②;③;④;⑤方程的兩個根為其中正確的結(jié)論有(

A.①③④B.②④⑤C.①②⑤D.②③⑤

【答案】B

【解析】

由拋物線的開口方向可判斷a的正負(fù),由拋物線的對稱軸是直線x=2可得ab的關(guān)系,進而可判斷①④;

由拋物線與x軸的兩個交點坐標(biāo)可判斷②⑤;

由圖象可知當(dāng)x=﹣3y0,于是可判斷③,由此可得答案.

解:∵拋物線開口向下,∴a0,

=﹣2,∴b4a,∴ab0,∴①錯誤,④正確;

∵拋物線與x軸交于(40)(0,0),

b24ac0,c=0,∴方程ax2+bx0的兩個根為x10x2=﹣4,∴②⑤都正確;

∵當(dāng)x=﹣3y0,∴9a3b+c0,∴③錯誤;

故正確的有②④⑤.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,點PCD上一動點,連結(jié)PA,分別過點B、DBEPA、DFPA,垂足為E、F,如圖①.

1)請?zhí)剿?/span>BEDF、EF這三條線段長度具有怎樣的數(shù)量關(guān)系,若點PDC的延長線上(如圖②),那么這三條線段的長度之間又有怎樣的數(shù)量關(guān)系?若點PCD的延長線上呢(如圖③)?請分別直接寫出結(jié)論.

2)請在(1)中的三個結(jié)論中選擇一個加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面內(nèi)容,并解答問題:楊輝和他的一個數(shù)學(xué)問題:提起代數(shù),人們自然就和方程聯(lián)系起米.事實上,我國古代對代數(shù)的研究,特別是對方程的解法研究有著優(yōu)良的傳統(tǒng)并取得了重要成果.楊輝,字謙光,錢塘(今浙江杭州)人,南宋杰出的數(shù)學(xué)家和數(shù)學(xué)教育家,楊輝一生留下了大量的著述,他著名的數(shù)學(xué)書共五種二十一卷.下面是楊輝在1275年提出的一個問題(選自楊輝所著《田畝比類乘除算法》):直田積(矩形面積)八百六十四步(平方步),只云闊(寬)不及長一十二步(寬比長少一十二步),問闊及長各幾步.請你用學(xué)過的知識解決這個問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形的頂點分別在軸和軸上,點的坐標(biāo)為,雙曲線的圖象經(jīng)過的中點,且與交于點,連接

1)求的值及點的坐標(biāo);

2)若點邊上一點,且相似于.求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知Pa,y1),Q1,y2)是拋物線ykx2+2k+1x+2k是不等于0的常數(shù))上的兩點.

1)求證:無論k取任何實數(shù)時,關(guān)于x的方程kx2+2k+1x+20總有實數(shù)根;

2)當(dāng)k1時,

求拋物線ykx2+2k+1x+2圖象與x軸兩個交點坐標(biāo),并畫出此條拋物線的草圖;

y1y2,請結(jié)合函數(shù)圖象確定實數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點O與坐標(biāo)原點重合,A,C分別在y軸,x軸上,點B的坐標(biāo)為,直線分別交AB,BC于點M,N,,反比例函數(shù)圖象經(jīng)過點M,N

1)求反比例函數(shù)的表達式;

2)根據(jù)圖象,請直接寫出不等式的解集________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca0)的大致圖象如圖所示,頂點坐標(biāo)為(﹣2,﹣9a),下列結(jié)論:abc0;②4a+2b+c0③5ab+c0;若方程ax+5)(x1)=﹣1有兩個根x1x2,且x1x2,則﹣5x1x21;若方程|ax2+bx+c|1有四個根,則這四個根的和為﹣8,其中正確的結(jié)論有( 。

A.①②③④B.①②③⑤C.②③④⑤D.①②④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ADB≌△EDBBDE≌△CDE,B,E,C在一條直線上.下列結(jié)論:①BD是∠ABE的平分線;②ABAC;③∠C=30°;④線段DEBDC的中線;⑤AD+BD=AC.其中正確的有( )個.

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=x2+bx+c的圖象過點B(0,1)和C(4,3)兩點,與x軸交于點D、點E,過點B和點C的直線與x軸交于點A.

(1)求二次函數(shù)的解析式;

(2)在x軸上有一動點P,隨著點P的移動,存在點P使PBC是直角三角形,請你求出點P的坐標(biāo);

(3)若動點P從A點出發(fā),在x軸上沿x軸正方向以每秒2個單位的速度運動,同時動點Q也從A點出發(fā),以每秒a個單位的速度沿射線AC運動,是否存在以A、P、Q為頂點的三角形與ABD相似?若存在,直接寫出a的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案