【題目】某裝備企業(yè)采用訂單式生產(chǎn)銷售某種產(chǎn)品,保證其銷售量與產(chǎn)量相等,圖中的線段,線段分別表示該產(chǎn)品每萬臺生產(chǎn)成本(單位:萬元)、銷售價(單位:萬元)與產(chǎn)量(單位:臺)之間的函數(shù)關(guān)系,考慮企業(yè)的經(jīng)濟效益,當(dāng)此種產(chǎn)品市場預(yù)定生產(chǎn)為萬臺時,將停止訂單生產(chǎn)銷售,求當(dāng)該產(chǎn)品產(chǎn)量為多少萬臺時,可實現(xiàn)萬元利潤?
【答案】當(dāng)該產(chǎn)品產(chǎn)量為50萬臺時,可實現(xiàn)2000萬元利潤.
【解析】
線段AB、CD經(jīng)過的兩點的坐標(biāo)利用待定系數(shù)法確定一次函數(shù)的表達(dá)式;利用總利潤=單位利潤×產(chǎn)量列出有關(guān)x的方程求得答案.
設(shè)線段AB所表示的y1與x之間的函數(shù)關(guān)系式為y=k1x+b1,
∵y=k1x+b1的圖象過點(0,60)與(75,45),
∴這個一次函數(shù)的表達(dá)式為;y=-0.2x+60(0≤x≤75);
設(shè)線段CD所表示y2與x之間的函數(shù)關(guān)系式為y=k2x+b2,
∵y=k2x+b2的圖象過點(0,120)與(75,75),
∴這個一次函數(shù)的表達(dá)式為;y=-0.6x+120(0≤x≤75);
設(shè)該產(chǎn)品產(chǎn)量x萬臺時,可實現(xiàn)2000萬元利潤,由題意得
x(-0.6x+120)-x(-0.2x+60)=2000
解得:x1=50,x2=100(不合題意,舍去),
答:當(dāng)該產(chǎn)品產(chǎn)量為50萬臺時,可實現(xiàn)2000萬元利潤.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一倉庫為了保持庫內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動通風(fēng)設(shè)施,該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=米,上部△CDG是等邊三角形,固定點E為AB的中點!EMN是由電腦控制其變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN(MN可與CD重合)是可以沿設(shè)施邊框上下滑動且始終保持與AB平行的伸縮橫桿。(當(dāng)MN在DC上方時,MD的長度是MN到DC距離的倍)
(1)當(dāng)MN和AB之間的距離為0.5米時,求此時 △EMN的面積;
(2)設(shè)MN與AB之間的距離為x米,求△EMN的面積S(平方米)與x的函數(shù)關(guān)系式;
(3)探究△EMN的面積S(平方米)有無最大值,若有,求出這個最大值;若無,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年本市蜜桔大豐收,某水果商銷售一種蜜桔,成本價為10元/千克,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于18元/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)之間的函數(shù)關(guān)系如圖所示:
(1)求y與x之間的函數(shù)關(guān)系式;
(2)該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價應(yīng)定為多少?
(銷售利潤=銷售價-成本價)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的圖象如圖所示,則下列結(jié)論:①;②;③;④.其中正確的結(jié)論是( )
A. ①② B. ②③ C. ③④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點、分別在邊、上,如果,且,那么下列說法中,錯誤的是( )
A. △ADE∽△ABC B. △ADE∽△ACD
C. △ADE∽△DCB D. △DEC∽△CDB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角三角形ABC中,AB=10,S△ABC=30,∠ABC的平分線BD交AC于點D,點M、N分別是BD和BC上的動點,則CM+MN的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB>AD,把矩形沿對角線AC所在直線折疊,使點B落在點E處,AE交CD于F,連接DE.
(1)求證:△ADE≌△CED
(2)若AD=4,AB=8,求△ACF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(a、b、c為常數(shù)且a≠0)中的x與y的部分對應(yīng)值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
給出了結(jié)論:
(1)二次函數(shù)有最小值,最小值為﹣3;
(2)當(dāng)時,y<0;
(3)二次函數(shù)的圖象與x軸有兩個交點,且它們分別在y軸兩側(cè).
則其中正確結(jié)論的個數(shù)是
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校有A、B兩個餐廳,甲、乙兩名學(xué)生各自隨機選擇其中一個餐廳用餐,請用列表或畫樹狀圖的方法解答:
(1)甲、乙兩名學(xué)生在同一餐廳用餐的概率;
(2)甲、乙兩名學(xué)生至少有一人在B餐廳的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com