【題目】反比例函數(shù)的圖象經(jīng)過點點是直線上一個動點,如圖所示,設點的橫坐標為且滿足過點分別作軸,軸,垂足分別為與雙曲線分別交于兩點,連結.
(1)求的值并結合圖像求出的取值范圍;
(2)在點運動過程中,求線段最短時點的坐標;
(3)將三角形沿著翻折,點的對應點得到四邊形能否為菱形?若能,求出點坐標;若不能,說明理由;
(4)在點運動過程中使得求出此時的面積.
【答案】(1),,(2),(3)能,,
(4)
【解析】
(1)先把(1,3)代入求出k的值,再由兩函數(shù)有交點求出m的值,根據(jù)函數(shù)圖象即可得出結論;
(2)根據(jù)線段OC最短可知OC為∠AOB的平分線,對于,令,即可得出C點坐標,把代入中求出的值即可得出P點坐標;
(3)當OC=OD時,四邊形O′COD為菱形,由對稱性得到△AOC≌△BOD,即OA=OB,由此時P橫縱坐標相等且在直線上即可得出結論.
(4)設,則,,根據(jù)PD=DB,構建方程求出,即可解決問題.
解:(1)∴反比例函數(shù)(x>0,k≠0)的圖象進過點(1,3),
∴把(1,3)代入,解得,
.
∵ ,
∴,
,
∴由圖象得:;
(2)∵線段OC最短時,
∴OC為∠AOB的平分線,
∵對于,令,
∴,即C,
∴把代入中,得:,即P;
(3)四邊形O′COD能為菱形,
∵當OC=OD時,四邊形O′COD為菱形,
∴由對稱性得到△AOC≌△BOD,即OA=OB,
∴此時P橫縱坐標相等且在直線上,
即,解得:,即P.
(4)設B,則,
∵PD=DB,
∴,
解得:(舍棄),
∴,D,,,
科目:初中數(shù)學 來源: 題型:
【題目】大學生小張利用暑假50天在一超市勤工儉學,被安排銷售一款成本為40元/件的新型商品,此類新型商品在第x天的銷售量p件與銷售的天數(shù)x的關系如下表:
x(天) | 1 | 2 | 3 | … | 50 |
p(件) | 118 | 116 | 114 | … | 20 |
銷售單價q(元/件)與x滿足:當1≤x<25時q=x+60;當25≤x≤50時q=40+.
(1)請分析表格中銷售量p與x的關系,求出銷售量p與x的函數(shù)關系.
(2)求該超市銷售該新商品第x天獲得的利潤y元關于x的函數(shù)關系式.
(3)這50天中,該超市第幾天獲得利潤最大?最大利潤為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用適當?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)(x﹣5)2=16
(2)x2=5x
(3)x2﹣4x+1=0
(4)x2+3x﹣4=0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結論:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤b2>4ac;其中正確的結論有______.(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中有一格點三角形,該三角形的三個頂點為:A(1,1)、B(-3,1)、C(-3.-1).
(1)若△ABC的外接圓的圓心為P,則點P的坐標為_________.
(2)如圖所示,在11×8的網(wǎng)格圖內(nèi),以坐標原點O點為位似中心,將△ABC按相似比2:1放大,A、B、C的對應點分別為得到在圖中畫出若將沿軸方向平移,需平移_______單位長度,能使得所在的直線與⊙P相切.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某品牌牛奶供應商提供A,B,C,D四種不同口味的牛奶供學生飲用.某校為了了解學生對不同口味的牛奶的喜好,對全校訂牛奶的學生進行了隨機調查,并根據(jù)調查結果繪制了如下兩幅不完整的統(tǒng)計圖.根據(jù)統(tǒng)計圖的信息解決下列問題:
(1)本次調查的學生有多少人?
(2)補全上面的條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中C對應的中心角度數(shù)是_____;
(4)若該校有600名學生訂了該品牌的牛奶,每名學生每天只訂一盒牛奶,要使學生能喝到自己喜歡的牛奶,則該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約多少盒?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側),與y軸的正半軸交于點C,頂點為D.
(1)求頂點D的坐標(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過點C.
①求拋物線的函數(shù)關系式;
②如圖2,點E是y軸負半軸上一點,連接BE,將△OBE繞平面內(nèi)某一點旋轉180°,得到△PMN(點P、M、N分別和點O、B、E對應),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標;
③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=3x﹣3分別交x軸、y軸于A、B兩點,拋物線y=x2+bx+c經(jīng)過A、B兩點,點C是拋物線與x軸的另一個交點(與A點不重合).
(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)在拋物線的對稱軸上,是否存在點M,使△ABM為等腰三角形?若不存在,請說明理由;若存在,求出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究:如圖,在平面直角坐標系中,Rt△AOC的直角邊OC在y軸正半軸上,且頂點O與坐標原點重合,點A的坐標為(2,4),直線y=-x+b過點A,與x軸交于點B.
(1)求點B的坐標及直線AB的解析式;
(2)動點P從點O出發(fā),以每秒1個單位長的速度,沿O-C-A的路線向點A運動,同時動點M從點B出發(fā),以相同的速度沿BO的方向向O運動,過點M作MQ⊥x軸,交線段BA或線段AO于點Q,當點P到達A點時,點P和點M都停止運動.在運動過程中,設動點P運動的時間為t秒.△APQ的面積為S,求S關于t的函數(shù)關系式;
(3)是否存在以M、P、Q為頂點的三角形的面積與S相等?若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com