【題目】在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案.也就是說,使用給定的某些正多邊形,能夠拼成一個(gè)平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌).這顯然與正多邊形的內(nèi)角大小有關(guān).當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)多邊形的內(nèi)角加在一起恰好組成一個(gè)周角(360°)時(shí),就拼成了一個(gè)平面圖形.
(1)請根據(jù)下列圖形,填寫表中空格:
正多邊形邊數(shù) | 3 | 4 | 5 | 6 | … |
正多邊形每個(gè)內(nèi)角的度數(shù) | … |
(2)如圖,如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個(gè)平面圖形;
(3)正三角形、正四邊形、正六邊形中選一種,再在其他正多邊形中選一種,請畫出用這兩種不同的正多邊形鑲嵌成的一個(gè)平面圖形(草圖);并探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說明你的理由.
【答案】(1)見解析;(2)正三角形、正四邊形(或正方形)、正六邊形;(3)符合條件的圖形只有一種.
【解析】
本題主要考查了平面鑲嵌(密鋪).(1)利用正多邊形一個(gè)內(nèi)角="180-"求解;
(2)進(jìn)行平面鑲嵌就是在同一頂點(diǎn)處的幾個(gè)多邊形的內(nèi)角和應(yīng)為360°,因此我們只需驗(yàn)證360°是不是上面所給的幾個(gè)正多邊形的一個(gè)內(nèi)角度數(shù)的整數(shù)倍;
(3)常見的兩種正多邊形的密鋪組合有:正三角形和正四邊形能密鋪,正六邊形只能和正三角形密鋪.所以要從正三角形、正四邊形、正六邊形中選一種,只能選擇正四邊形.
解:(1)由正n邊形的內(nèi)角的性質(zhì)可分別求得正三角形、正方形、正五邊形、正六邊形、…、正n邊形的每一個(gè)內(nèi)角為:
60°,90°,108°,120°,…;
(2)如限于用一種正多邊形鑲嵌,則由一頂點(diǎn)的周圍角的和等于360°得正三角形、正四邊形(或正方形)、正六邊形都能鑲嵌成一個(gè)平面圖形;
(3)如:正方形和正八邊形(如圖),
設(shè)在一個(gè)頂點(diǎn)周圍有m個(gè)正方形的角,n個(gè)正八邊形的角,
那么m,n應(yīng)是方程m90°+n135°=360°的正整數(shù)解.
即2m+3n=8的正整數(shù)解,只有m=1,n=2一組,
∴符合條件的圖形只有一種.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,將腰CD以D為中心逆時(shí)針旋轉(zhuǎn)90°至DE,連接AE、CE,△ADE的面積為3,則BC的長為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中任意一點(diǎn)p(x,y)經(jīng)平移后對應(yīng)點(diǎn)為p1(x+5,y+3),將△ABC作同樣的平移得到△A1B1C1.
(1)畫出△A1B1C1;
(2)求A1,B1,C1的坐標(biāo);
(3)寫出平移的過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠C=90°,BE,DF分別是∠ABC,∠ADC的平分線.
(1)∠1與∠2有什么關(guān)系,為什么?
(2)BE與DF有什么關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們將在直角坐標(biāo)系中圓心坐標(biāo)和半徑均為整數(shù)的圓稱為“整圓”.如圖,直線l:y=kx+4 與x軸、y軸分別交于A、B,∠OAB=30°,點(diǎn)P在x軸上,⊙P與l相切,當(dāng)P在線段OA上運(yùn)動時(shí),使得⊙P成為整圓的點(diǎn)P個(gè)數(shù)是( )
A.6
B.8
C.10
D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,這是一個(gè)五角星ABCDE,你能計(jì)算出∠A+∠B+∠C+∠D+∠E的度數(shù)嗎?為什么?(必須寫推理過程)
(2)如圖2,如果點(diǎn)B向右移動到AC上,那么還能求出∠A+∠DBE+∠C+∠D+∠E的大小嗎?若能結(jié)果是多少?(可不寫推理過程)
(3)如圖,當(dāng)點(diǎn)B向右移動到AC的另一側(cè)時(shí),上面的結(jié)論還成立嗎?
(4)如圖4,當(dāng)點(diǎn)B、E移動到∠CAD的內(nèi)部時(shí),結(jié)論又如何?根據(jù)圖3或圖4,說明你計(jì)算的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次男子馬拉松長跑比賽中,隨機(jī)抽得12名選手所用的時(shí)間(單位:分鐘)得到如下樣本數(shù)據(jù):140 146 143 175 125 164 134 155 152 168 162 148
(1)計(jì)算該樣本數(shù)據(jù)的中位數(shù)和平均數(shù);
(2)如果一名選手的成績是147分鐘,請你依據(jù)樣本數(shù)據(jù)的中位數(shù),推斷他的成績?nèi)绾危?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年5月,舉世矚目的“一帶一路”國際合作高峰論壇在北京舉行.為了讓學(xué)生更深刻地了解這一普惠世界的中國創(chuàng)舉,某校組織八年級甲班和乙班的學(xué)生開展“一帶一路”知識競賽活動.現(xiàn)場決賽時(shí),甲班和乙班分別選5名同學(xué)參加比賽,成績?nèi)鐖D所示:
(1)根據(jù)上圖將計(jì)算結(jié)果填入下表:
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
甲班 | 8.5 | 8.5 | _____ | _____ |
乙班 | 8.5 | ______ | 10 | 1.6 |
(2)你認(rèn)為哪個(gè)班的成績較好?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)題意,解答問題:
(1)如圖1,已知直線y=2x+4與x軸、y軸分別交于A、B兩點(diǎn),求線段AB的長.
(2)如圖2,類比(1)的解題過程,請你通過構(gòu)造直角三角形的方法,求出點(diǎn)M(3,4)與點(diǎn)N(﹣2,﹣1)之間的距離.
(3)在(2)的基礎(chǔ)上,若有一點(diǎn)D在x軸上運(yùn)動,當(dāng)滿足DM=DN時(shí),請求出此時(shí)點(diǎn)D的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com