【題目】如圖,四邊形ABCD中,∠A=C=90°BE,DF分別是∠ABC,ADC的平分線.

11與∠2有什么關(guān)系,為什么?

2BEDF有什么關(guān)系?請(qǐng)說(shuō)明理由.

【答案】(1)∠1+∠2=90°;理由見(jiàn)解析;(2)BE∥DF;理由見(jiàn)解析.

【解析】試題分析:(1)根據(jù)四邊形的內(nèi)角和,可得∠ABC+∠ADC=180°,然后,根據(jù)角平分線的性質(zhì),即可得出;

2)由互余可得∠1=∠DFC,根據(jù)平行線的判定,即可得出.

試題解析:(1∠1+∠2=90°

∵BE,DF分別是∠ABC∠ADC的平分線,

∴∠1=∠ABE,∠2=∠ADF

∵∠A=∠C=90°,

∴∠ABC+∠ADC=180°,

∴2∠1+∠2=180°,

∴∠1+∠2=90°;

2BE∥DF

△FCD中,∵∠C=90°,

∴∠DFC+∠2=90°,

∵∠1+∠2=90°

∴∠1=∠DFC,

∴BE∥DF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)中華人民共和國(guó)2017年國(guó)民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào),我國(guó)年農(nóng)村貧困人口統(tǒng)計(jì)如圖所示根據(jù)統(tǒng)計(jì)圖中提供的信息,預(yù)估2018年年末全國(guó)農(nóng)村貧困人口約為______萬(wàn)人,你的預(yù)估理由是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)10×10網(wǎng)格,每個(gè)小正方形的邊長(zhǎng)均為1,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),△ABC的頂點(diǎn)均在格點(diǎn)上.

(1)畫(huà)出△ABC關(guān)于直線l的對(duì)稱的△A1B1C1

(2)畫(huà)出△ABC關(guān)于點(diǎn)P的中心對(duì)稱圖形△A2B2C2

(3)△A1B1C1與△A2B2C2組成的圖形_______________(是或否)軸對(duì)稱圖形,如果是軸對(duì)稱圖形,請(qǐng)畫(huà)出對(duì)稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)冰箱、彩電進(jìn)行銷售,已知冰箱的進(jìn)貨單價(jià)比彩電的進(jìn)貨單價(jià)多400元,若商場(chǎng)用80 000元購(gòu)進(jìn)冰箱的數(shù)量與用64 000元購(gòu)進(jìn)彩電的數(shù)量相等.該商場(chǎng)冰箱、彩電的售貨單價(jià)如下表:

冰箱

彩電

售價(jià)(元/臺(tái))

2500

2000

(1)分別求出冰箱、彩電的進(jìn)貨單價(jià).

(2)為了滿足市場(chǎng)需求,商場(chǎng)決定用不超過(guò)90 000元的資金采購(gòu)冰箱、彩電共50臺(tái)。若該商場(chǎng)將購(gòu)進(jìn)的冰箱、彩電共50臺(tái)全部售出,獲得利潤(rùn)為w元,為了使商場(chǎng)的利潤(rùn)最大,該商場(chǎng)該如何購(gòu)進(jìn)冰箱、彩電,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:﹣24 +|1﹣2 |+( 1+(π﹣ 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將⊙O沿弦AB折疊,圓弧恰好經(jīng)過(guò)圓心O,點(diǎn)P是優(yōu)弧 上一點(diǎn),則∠APB的度數(shù)為(
A.45°
B.30°
C.75°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案.也就是說(shuō),使用給定的某些正多邊形,能夠拼成一個(gè)平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌).這顯然與正多邊形的內(nèi)角大小有關(guān).當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)多邊形的內(nèi)角加在一起恰好組成一個(gè)周角(360°)時(shí),就拼成了一個(gè)平面圖形.

(1)請(qǐng)根據(jù)下列圖形,填寫(xiě)表中空格:

正多邊形邊數(shù)

3

4

5

6

正多邊形每個(gè)內(nèi)角的度數(shù)

(2)如圖,如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個(gè)平面圖形;

(3)正三角形、正四邊形、正六邊形中選一種,再在其他正多邊形中選一種,請(qǐng)畫(huà)出用這兩種不同的正多邊形鑲嵌成的一個(gè)平面圖形(草圖);并探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校九年級(jí)學(xué)生開(kāi)展踢毽子比賽活動(dòng),每班派5名同學(xué)參加,按團(tuán)體總分多少排列名次,在規(guī)定時(shí)間內(nèi)每人踢100個(gè)以上(100)為優(yōu)秀,下表是成績(jī)最好的甲班和乙班5名學(xué)生的比賽數(shù)據(jù)(單位:個(gè))

1號(hào)

2號(hào)

3號(hào)

4號(hào)

5號(hào)

總分

甲班

100

98

110

89

103

500

乙班

89

100

95

119

97

500

統(tǒng)計(jì)發(fā)現(xiàn)兩班總分相等,此時(shí)有同學(xué)建議,可以通過(guò)考查數(shù)據(jù)中的其他信息作為參考,請(qǐng)你解答下列問(wèn)題:

(1)計(jì)算兩班的優(yōu)秀率;

(2)求兩班比賽數(shù)據(jù)的中位數(shù);

(3)估計(jì)兩班比賽數(shù)據(jù)的方差哪一個(gè)。

(4)根據(jù)以上三條信息,你認(rèn)為應(yīng)該把冠軍獎(jiǎng)狀發(fā)給哪一個(gè)班?簡(jiǎn)述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在△ABC中,AD⊥BC,垂足為點(diǎn)D,DE∥AC交AB于E,DF∥AB交AC于F,當(dāng)△ABC再添加一個(gè)條件:時(shí),四邊形AEDF為菱形(填寫(xiě)一個(gè)條件即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案