【題目】如圖,點是矩形的邊上的一個動點,矩形的兩條邊、的長分別為68,那么點到矩形的兩條對角線的距離之和是(

A.B.C.D.不確定

【答案】C

【解析】

首先連接OP,由矩形的兩條邊AB、BC的長分別為68,可求得OA=OD=5,△AOD的面積,然后由SAOD=SAOP+SDOP=OAPE+ODPF求得答案.

解:連接OP,
∵矩形的兩條邊AB、BC的長分別為68,
S矩形ABCD=ABBC=48,OA=OC,OB=OD,AC=BD==10,
OA=OD=5
SACD=S矩形ABCD=24

SAOD=SACD=12,
SAOD=SAOP+SDOP=OAPE+ODPF=×5×PE+×5×PF=PE+PF=12

解得:PE+PF=.

故選C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A(m,6),B(n,1)在反比例函數(shù)y=的圖象上,ADx軸于點D,BCx軸于點C,點ECD上,CD=5,ABE的面積為10,則點E的坐標是(  )

A. (3,0) B. (4,0) C. (5,0) D. (6,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AD=2AB,EAD的中點,CE的延長線交BA的延長線于點F

1)求證:FB=AD

2)若∠DAF=70°,求∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(10分)已知二次函數(shù)

(1)如果二次函數(shù)的圖象與x軸有兩個交點,求m的取值范圍;

(2)如圖,二次函數(shù)的圖象過點A(3,0),與y軸交于點B,直線AB與這個二次函數(shù)圖象的對稱軸交于點P,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線AB與直線BC相交于點,直線AB軸相交于點,直線BC軸、軸分別相交于點、點C

1)求直線AB的解析式;

2)過點ABC的平行線交軸于點E,求點E的坐標;

3)在(2)的條件下,點P是直線AB上一動點且在軸的上方,如果以點D、EP、Q為頂點的平行四邊形的面積等于△ABC,請求出點P的坐標,并直接寫出點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A為函數(shù) 圖象上一點,連結(jié)OA,交函數(shù) 的圖象于點B,點Cx軸上一點,且AO=AC,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)yy1+y2y1x成正比例,y2x成反比例,且當x=1時,y=4;當x=2時,y=5. yx之間的函數(shù)關(guān)系式_____,當x=4時,求y_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙OBC于點D,交AB于點E,過點DDFAB,垂足為F,連接DE.

(1)求證:直線DF與⊙O相切;

(2)求證:BF=EF;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為1的等邊△ABO在平面直角坐標系的位置如圖所示,點O為坐標原點,點Ax軸上,以點O為旋轉(zhuǎn)中心,將△ABO按逆時針方向旋轉(zhuǎn)60°,得到△OAB′,則點A′的坐標為_____

查看答案和解析>>

同步練習冊答案