【題目】已知:直線AB與直線PQ交于點(diǎn)E,直線CD與直線PQ交于點(diǎn)F,∠PEB+∠QFD=180°.
(1)如圖1,求證:AB∥CD;
(2)如圖2,點(diǎn)G為直線PQ上一點(diǎn),過點(diǎn)G作射線GH∥AB,在∠EFD內(nèi)過點(diǎn)F作射線FM,∠FGH內(nèi)過點(diǎn)G作射線GN,∠MFD=∠NGH,求證:FM∥GN;
(3)如圖3,在(2)的條件下,點(diǎn)R為射線FM上一點(diǎn),點(diǎn)S為射線GN上一點(diǎn),分別連接RG、RS、RE,射線RT平分∠ERS,∠SGR=∠SRG,TK∥RG,若∠KTR+∠ERF=108°,∠ERT=2∠TRF,∠BER=40°,求∠NGH的度數(shù).
【答案】(1)見解析;(2)見解析;(3)∠NGH=32°.
【解析】
(1)根據(jù)鄰補(bǔ)角的性質(zhì)得∠PFD+∠QFD=180,再由同角的補(bǔ)角相等得∠PEB=∠PFD,最后由平行線的判定得結(jié)論;
(2)先證GH∥CD,得∠EFD=∠FGH,再證∠EFM=∠FGN,便可得結(jié)論;
(3)先證明∠TRF=∠SRF,設(shè)∠SRG=x,由∠KTR+∠ERF=108,列出x的方程,求得x,便可得∠ERS,過R作RI∥AB,過點(diǎn)S作SL∥AB,則AB∥IR∥SL∥GH,通過平行線的性質(zhì),求得∠RSL,再由三角形外角定理得∠RSN,最后便可求得結(jié)果.
(1)∵∠PEB+∠QFD=180,
又∵∠PFD+∠QFD=180,
∴∠PEB=∠PFD,
∴AB∥CD;
(2)∵GH∥AB,AB∥CD
∴GH∥CD,
∴∠EFD=∠FGH,
∵∠MFD=∠NGH,
∴∠EFM=∠FGN,
∴FM∥GN;
(3)∵FM∥GN,
∴∠FRG=∠SGR,
∵∠SGR=∠SRG,
∴∠FRG=∠SRG,
∵射線RT平分∠ERS,
∴∠ERT=∠TRS,
∵∠ERT=2∠TRF,
∴∠TRS=2∠TRF,
∴∠TRF=∠SRF,
設(shè)∠SRG=∠FRG=x,則∠TRF=2x,∠ERT=∠SRT=4x,
∵TK∥RG,
∴∠KTR=∠TRG=2x+x=3x,
∵∠KTR+∠ERF=108,
∴3x+4x+2x=108,
∴x=12,
∴∠ERS=8x=96,
過R作RI∥AB,過點(diǎn)S作SL∥AB,則AB∥IR∥SL∥GH,
∴∠BER=∠ERI,∠IRS=∠RSL,∠NGH=∠NSL,
∵∠BER=40,
∴∠ERI=40,
∴∠RSL=∠IRS=∠ERS﹣∠ERI=96﹣40=56,
∵∠RSN=∠SRG+∠SGR=24,
∴∠NGH=∠NSL=∠RSL﹣∠RSN=56﹣24=32.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,已知,,平分,平分,求的度數(shù).
(2)如果(1)中,,其他條件不變,求的度數(shù).
(3)如果(1)中,,,其他條件不變,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生本學(xué)期6次數(shù)學(xué)考試成績?nèi)缦卤硭荆?/span>
成績類別 | 第一次月考 | 第二次月考 | 期中 | 第三次月考 | 第四次月考 | 期末 |
成績/分 | 105 | 110 | 108 | 113 | 108 | 112 |
(1)6次考試成績的中位數(shù)為 ,眾數(shù)為 .
(2)求該生本學(xué)期四次月考的平均成績.
(3)如果本學(xué)期的總評成績按照月考平均成績占20﹪、期中成績占30﹪、期末成績占50﹪計(jì)算,那么該生本學(xué)期的數(shù)學(xué)總評成績是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若AB是⊙O內(nèi)接正五邊形的一邊,AC是⊙O內(nèi)接正六邊形的一邊,則∠BAC等于( )
A. 120° B. 6° C. 114° D. 114°或6°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①②③④,M,N分別是⊙O的內(nèi)接正三角形ABC,正方形ABCD,正五邊形ABCDE,…,正n邊形ABCDEFG…的邊AB,BC上的點(diǎn),且BM=CN,連接OM,ON.
(1)求圖①中∠MON的度數(shù);
(2)圖②中,∠MON的度數(shù)是________,圖③中∠MON的度數(shù)是________;
(3)試探究∠MON的度數(shù)與正n邊形的邊數(shù)n的關(guān)系(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°,AB=AC,∠ABC的平分線BD交AC于點(diǎn)D,CE⊥BD交BD的延長線于點(diǎn)E,若BD=2,則CE=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A(2,0),點(diǎn) B 在 y 軸上,將三角形 OAB 沿 x 軸負(fù)方向平移,平移后的圖形為三角形 DEC,且點(diǎn) C 的坐標(biāo)為(-6,4) .
(1)直接寫出點(diǎn) E 的坐標(biāo) ;
(2)在四邊形 ABCD 中,點(diǎn) P 從點(diǎn) B 出發(fā),沿“BC→CD”移動(dòng).若點(diǎn) P 的速度為每秒 2 個(gè)單位長度, 運(yùn)動(dòng)時(shí)間為 t 秒,回答下列問題:
①求點(diǎn) P 在運(yùn)動(dòng)過程中的坐標(biāo),(用含 t 的式子表示,寫出過程);
②當(dāng) 3 秒<t<5 秒時(shí),設(shè)∠CBP=x°,∠PAD=y°,∠BPA=z°,試問 x,y,z 之間的數(shù)量關(guān)系能否確定?若能,請用含 x,y 的式子表示 z,寫出過程;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知△ABC和△BDE都是等邊三角形.則下列結(jié)論:①AE=CD;②BF=BG;③∠AHC=60°;④△BFG是等邊三角形;⑤HB平分∠AHD.其中正確的有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,∠B=30°,AB=10,點(diǎn)D是射線CB上的一個(gè)動(dòng)點(diǎn),△ADE是等邊三角形,點(diǎn)F是AB的中點(diǎn),連接EF.
(1)如圖,點(diǎn)D在線段CB上時(shí),
①求證:△AEF≌△ADC;
②連接BE,設(shè)線段CD=x,BE=y,求y2﹣x2的值;
(2)當(dāng)∠DAB=15°時(shí),求△ADE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com