【題目】某學(xué)生本學(xué)期6次數(shù)學(xué)考試成績(jī)?nèi)缦卤硭荆?/span>
成績(jī)類別 | 第一次月考 | 第二次月考 | 期中 | 第三次月考 | 第四次月考 | 期末 |
成績(jī)/分 | 105 | 110 | 108 | 113 | 108 | 112 |
(1)6次考試成績(jī)的中位數(shù)為 ,眾數(shù)為 .
(2)求該生本學(xué)期四次月考的平均成績(jī).
(3)如果本學(xué)期的總評(píng)成績(jī)按照月考平均成績(jī)占20﹪、期中成績(jī)占30﹪、期末成績(jī)占50﹪計(jì)算,那么該生本學(xué)期的數(shù)學(xué)總評(píng)成績(jī)是多少?
【答案】(1)109 , 108.(2)109;(3)110.2
【解析】
(1)把6個(gè)數(shù)從小到大排列,按照中位數(shù)、眾數(shù)的概念即可得出結(jié)論;
(2)把平時(shí)測(cè)試成績(jī)相加,再求出其平均數(shù)即可;
(3)取4次月考成績(jī)平均分的20%加上期中成績(jī)的30﹪加上期末成績(jī)的50﹪計(jì)算即可.
解:(1)這6個(gè)數(shù)從小到大排列為:105,108,108,110,112,113,中位數(shù)是=109,眾數(shù)是108.
故答案為:109,108;
(2)平時(shí)測(cè)試的數(shù)學(xué)平均成績(jī)=(分);
(3)總評(píng)成績(jī)=(分)
答:該生本學(xué)期的數(shù)學(xué)總評(píng)成績(jī)?yōu)?/span>110.2分。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,M,N分別是CD,BC的中點(diǎn),且AM⊥CD,AN⊥BC。
(1)求證:∠BAD=2∠MAN;
(2)連接BD,若∠MAN=70°,∠DBC=40°,求∠ADC。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象經(jīng)過(guò)點(diǎn),直線與x軸交于點(diǎn).
(1)求的值;
(2)過(guò)第二象限的點(diǎn)作平行于x軸的直線,交直線于點(diǎn)C,交函數(shù)的圖象于點(diǎn)D.
①當(dāng)時(shí),判斷線段PD與PC的數(shù)量關(guān)系,并說(shuō)明理由;
②若,結(jié)合函數(shù)的圖象,直接寫(xiě)出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某條道路上通行車(chē)輛限速為60千米/時(shí),在離道路50米處建有一個(gè)監(jiān)測(cè)點(diǎn)P,道路AB段為檢測(cè)區(qū)(如圖).在△ABP中,已知∠PAB=32°,∠PBA=45°,那么車(chē)輛通過(guò)AB段的時(shí)間在多少秒以內(nèi)時(shí),可認(rèn)定為超速?(精確到0.1秒.參考數(shù)據(jù):sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形、、…按如圖所示的方式放置.點(diǎn)、、…和點(diǎn)、、…別在直線和軸上,則點(diǎn)的坐標(biāo)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)A(﹣2,6),且與x軸相交于點(diǎn)B,與正比例函數(shù)y=3x的圖象相交于點(diǎn)C,點(diǎn)C的橫坐標(biāo)為1.
(1)求k、b的值;
(2)若點(diǎn)D在y軸負(fù)半軸上,且滿足S△COD=S△BOC,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班去商場(chǎng)為書(shū)法比賽買(mǎi)獎(jiǎng)品,書(shū)包每個(gè)定價(jià)40元,文具盒每個(gè)定價(jià)8元,商場(chǎng)實(shí)行兩種優(yōu)惠方案:①買(mǎi)一個(gè)書(shū)包送一個(gè)文具盒:②按總價(jià)的9折付款.若該班需購(gòu)買(mǎi)書(shū)包10個(gè),購(gòu)買(mǎi)文具盒若干個(gè)(不少于10個(gè)).
(1)當(dāng)買(mǎi)文具盒40個(gè)時(shí),分別計(jì)算兩種方案應(yīng)付的費(fèi)用;
(2)當(dāng)購(gòu)買(mǎi)文具盒多少個(gè)時(shí),兩種方案所付的費(fèi)用相同;
(3)如何根據(jù)購(gòu)買(mǎi)文具盒的個(gè)數(shù),選擇哪種優(yōu)惠方案的費(fèi)用比較合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:直線AB與直線PQ交于點(diǎn)E,直線CD與直線PQ交于點(diǎn)F,∠PEB+∠QFD=180°.
(1)如圖1,求證:AB∥CD;
(2)如圖2,點(diǎn)G為直線PQ上一點(diǎn),過(guò)點(diǎn)G作射線GH∥AB,在∠EFD內(nèi)過(guò)點(diǎn)F作射線FM,∠FGH內(nèi)過(guò)點(diǎn)G作射線GN,∠MFD=∠NGH,求證:FM∥GN;
(3)如圖3,在(2)的條件下,點(diǎn)R為射線FM上一點(diǎn),點(diǎn)S為射線GN上一點(diǎn),分別連接RG、RS、RE,射線RT平分∠ERS,∠SGR=∠SRG,TK∥RG,若∠KTR+∠ERF=108°,∠ERT=2∠TRF,∠BER=40°,求∠NGH的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,∠BAD=∠BCD=90°,連接AC.若AC=6,則四邊形ABCD的面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com