【題目】中華文明,源遠(yuǎn)流長:中華詩詞,寓意深廣.為了傳承優(yōu)秀傳統(tǒng)文化,我市某校團(tuán)委組織了一次全校2000名學(xué)生參加的“中國詩詞大會”海選比賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績均不低于50分.為了更好地了解本次海選比賽的成績分布情況,隨機(jī)抽取了其中200名學(xué)生的海選比賽成績(成績x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列統(tǒng)計圖表
組別 | 海選成績x |
A組 | 50≤x<60 |
B組 | 60≤x<70 |
C組 | 70≤x<80 |
D組 | 80≤x<90 |
E組 | 90≤x<100 |
請根據(jù)所給信息,解答下列問題
①圖1條形統(tǒng)計圖中D組人數(shù)有多少?
②在圖2的扇形統(tǒng)計圖中,記表示B組人數(shù)所占的百分比為a%,則a的值為 ,表示C組扇形的圓心角的度數(shù)為 度;
③規(guī)定海選成績在90分以上(包括90分)記為“優(yōu)等”,請估計該校參加這次海選比賽的2000名學(xué)生中成績“優(yōu)等”的有多少人?
【答案】①圖1條形統(tǒng)計圖中D組人數(shù)有50人.②15,72.③700人.
【解析】
(1)從調(diào)查人數(shù)減去A、B、C、E組人數(shù),剩下的就是D組人數(shù),
(2)B組人數(shù)除以調(diào)查人數(shù)即可,360°乘以C組人數(shù)所占調(diào)查人數(shù)的百分比即可求出,
(3)用樣本估計總體,實(shí)際總?cè)藬?shù)乘以樣本中優(yōu)秀人數(shù)所在調(diào)查人數(shù)的百分比.
(1)條形統(tǒng)計圖中的D組人數(shù):200-10-30-40-70=50人,
答:圖1條形統(tǒng)計圖中D組人數(shù)有50人.
(2)30÷200=15%,
360°×=72°,
故答案為:15,72.
(3)2000×=700人,
答:這次海選比賽的2000名學(xué)生中成績“優(yōu)等”的大約有700人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:若∠AOD=∠BOC=60°,A、O、C三點(diǎn)在同一條線上,△AOB與△COD是能夠重合的圖形.求:
(1)旋轉(zhuǎn)中心;
(2)旋轉(zhuǎn)角度數(shù);
(3)圖中經(jīng)過旋轉(zhuǎn)后能重合的三角形共有幾對?若A、O、C三點(diǎn)不共線,結(jié)論還成立嗎?為什么?
(4)求當(dāng)△BOC為等腰直角三角形時的旋轉(zhuǎn)角度;
(5)若∠A=15°,則求當(dāng)A、C、B在同一條線上時的旋轉(zhuǎn)角度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王大伯幾年前承包了甲、乙兩片荒山,各栽100棵楊梅樹,成活98%.現(xiàn)已掛果,經(jīng)濟(jì)效益初步顯現(xiàn),為了分析收成情況,他分別從兩山上隨意各采摘了4棵樹上的楊梅,每棵的產(chǎn)量如折線統(tǒng)計圖所示.
(1)分別計算甲、乙兩山樣本的平均數(shù),并估算出甲、乙兩山楊梅的產(chǎn)量總和;
(2)試通過計算說明,哪個山上的楊梅產(chǎn)量較穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某市開展的環(huán)境創(chuàng)優(yōu)活動中,某居民小區(qū)要在一塊靠墻(墻長15米)的空地上修建一個矩形花園ABCD,花園的一邊靠墻,另三邊用總長為40m的柵欄圍成,若設(shè)花園平行于墻的一邊長為x(m),花園的面積為y(m2).
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)滿足條件的花園面積能達(dá)到200m2嗎?若能,求出此時x的值,若不能,說明理由;
(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,判斷當(dāng)x取何值時,花園的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,,C、B、D在同一條直線上.
(1)若,,連接,求的長.
(2)如圖設(shè)a、b、c是和的邊長,這時我們把關(guān)于x的形如的一元二次方程稱為“勾股方程”.
①寫出一個“勾股方程”;
②判斷關(guān)于x的“勾股方程”根的情況并說明理由;
③若是“勾股方程”的一個根,且四邊形的周長是,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個袋子中裝有除顏色外都相同的6個紅球和4個黃球,從袋子中任意摸出一個球,請問:
(1)“摸出的球是白球”是什么事件?
(2)“摸出的球是紅球”是什么事件?
(3)“摸出的球不是綠球”是什么事件?
(4)摸出哪種顏色球的可能性最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.
(1)若花園的面積為192m2,求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求x取何值時,花園面積S最大,并求出花園面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下列推理說明:
如圖,已知∠B+∠BCD=180°,∠B=∠D.求證:∠E=∠DFE.
證明:∵∠B+∠BCD=180°( 。
∴AB∥CD ( )
∴∠B= ( )
又∵∠B=∠D( 已知。
∴ ∠ = ∠ ( 等量代換。
∴AD∥BE( )
∴∠E=∠DFE( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小強(qiáng)為了測量一幢高樓的高AB,在旗桿CD與樓之間選定一點(diǎn)P.測得旗桿頂C的視線PC與地面夾角∠DPC=36°,測得樓頂A的視線PA與地面夾角∠APB=54°,測得P到樓底距離PB與旗桿高度都為10米,測得旗桿與樓之間的距離DB=36米,據(jù)此小強(qiáng)計算出了樓高,求樓高AB是多少米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com