【題目】矩形AOBC中,OB=4,OA=3.分別以OB,OA所在直線(xiàn)為x軸,y軸,建立如圖1所示的平面直角坐標(biāo)系.FBC邊上一個(gè)動(dòng)點(diǎn)(不與B,C重合),過(guò)點(diǎn)F的反比例函數(shù)y=(k>0)的圖象與邊AC交于點(diǎn)E.

(1)當(dāng)點(diǎn)F運(yùn)動(dòng)到邊BC的中點(diǎn)時(shí),求點(diǎn)E的坐標(biāo);

(2)連接EF,求∠EFC的正切值;

(3)如圖2,將CEF沿EF折疊,點(diǎn)C恰好落在邊OB上的點(diǎn)G處,求此時(shí)反比例函數(shù)的解析式.

【答案】(1)E(2,3);(2);(3).

【解析】(1)先確定出點(diǎn)C坐標(biāo),進(jìn)而得出點(diǎn)F坐標(biāo),即可得出結(jié)論;

(2)先確定出點(diǎn)F的橫坐標(biāo),進(jìn)而表示出點(diǎn)F的坐標(biāo),得出CF,同理表示出CF,即可得出結(jié)論;

(3)先判斷出EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出結(jié)論.

1)OA=3,OB=4,

B(4,0),C(4,3),

FBC的中點(diǎn),

F(4,),

F在反比例y=函數(shù)圖象上,

k=4×=6,

∴反比例函數(shù)的解析式為y=,

E點(diǎn)的坐標(biāo)為3,

E(2,3);

(2)F點(diǎn)的橫坐標(biāo)為4,

F(4,),

CF=BC﹣BF=3﹣=

E的縱坐標(biāo)為3,

E(,3),

CE=AC﹣AE=4﹣=,

RtCEF中,tanEFC=,

(3)如圖,由(2)知,CF=,CE=,

過(guò)點(diǎn)EEHOBH,

EH=OA=3,EHG=GBF=90°,

∴∠EGH+HEG=90°,

由折疊知,EG=CE,F(xiàn)G=CF,EGF=C=90°,

∴∠EGH+BGF=90°,

∴∠HEG=BGF,

∵∠EHG=GBF=90°,

∴△EHG∽△GBF,

,

,

BG=,

RtFBG中,FG2﹣BF2=BG2,

2﹣(2=,

k=,

∴反比例函數(shù)解析式為y=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】冰封文教店用1200元購(gòu)進(jìn)了甲、乙兩種鋼筆,已知甲種鋼筆進(jìn)價(jià)為每支12元,乙種鋼筆進(jìn)價(jià)為每支10元。在銷(xiāo)售時(shí)甲種鋼筆售價(jià)為每支15元,乙種鋼筆售價(jià)為每支12元,全部售完后共獲利270元。

(1)求冰封文教店購(gòu)進(jìn)甲、乙兩種鋼筆各多少支?

(2)冰封文教店以原價(jià)再次購(gòu)進(jìn)甲、乙兩種鋼筆,且購(gòu)進(jìn)甲種鋼筆的數(shù)量不變,而購(gòu)進(jìn)乙種鋼筆的數(shù)量是第一次的2倍,乙種鋼筆按原售價(jià)銷(xiāo)售,而甲種鋼筆降價(jià)銷(xiāo)售,當(dāng)兩種鋼筆銷(xiāo)售完畢時(shí),要使再次購(gòu)進(jìn)的鋼筆獲利不少于340元,甲種鋼筆每支最低售價(jià)應(yīng)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠(chǎng)第一車(chē)間有人,第二車(chē)間比第一車(chē)間人數(shù)的30人,如果從第二車(chē)間調(diào)出10人到第一車(chē)間,那么:

1)兩個(gè)車(chē)間共有______人?

2)調(diào)動(dòng)后,第一車(chē)間的人數(shù)為______人,第二車(chē)的人數(shù)為______人.

3)求調(diào)動(dòng)后,第一車(chē)間的人數(shù)比第二車(chē)的人數(shù)多幾人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算

1;

2;

32x 5y3x 2 y 2x x 3y

4)(x+12x-12x2+12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綠水青山就是金山銀山的理念已融入人們的日常生活中,因此,越來(lái)越多的人喜歡騎自行車(chē)出行.某自行車(chē)店在銷(xiāo)售某型號(hào)自行車(chē)時(shí),以高出進(jìn)價(jià)的50%標(biāo)價(jià).已知按標(biāo)價(jià)九折銷(xiāo)售該型號(hào)自行車(chē)8輛與將標(biāo)價(jià)直降100元銷(xiāo)售7輛獲利相同.

(1)求該型號(hào)自行車(chē)的進(jìn)價(jià)和標(biāo)價(jià)分別是多少元?

(2)若該型號(hào)自行車(chē)的進(jìn)價(jià)不變,按(1)中的標(biāo)價(jià)出售,該店平均每月可售出51輛;若每輛自行車(chē)每降價(jià)20元,每月可多售出3輛,求該型號(hào)自行車(chē)降價(jià)多少元時(shí),每月獲利最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°AC=BC,BECEE,ADCED

1)求證:△ADC≌△CEB

2AD=5cmDE=3cm,求BE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)經(jīng)過(guò)原點(diǎn)O(0,0),點(diǎn)A(1,1),點(diǎn)B(,0)

(1)求拋物線(xiàn)解析式;

(2)連接OA,過(guò)點(diǎn)AACOA交拋物線(xiàn)于C,連接OC,求AOC的面積;

(3)點(diǎn)My軸右側(cè)拋物線(xiàn)上一動(dòng)點(diǎn),連接OM,過(guò)點(diǎn)MMNOMx軸于點(diǎn)N.問(wèn):是否存在點(diǎn)M,使以點(diǎn)O,M,N為頂點(diǎn)的三角形與(2)中的AOC相似,若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】十一黃金周某一天,甲、乙兩名學(xué)生去距家36千米的風(fēng)景區(qū)游玩,他們從家出發(fā),騎電動(dòng)車(chē)行駛20分鐘時(shí)發(fā)現(xiàn)忘帶相機(jī),甲下車(chē)步行前往,乙騎電動(dòng)車(chē)按原路返回,乙取到相機(jī)后(在家取相機(jī)所用時(shí)間忽略不計(jì)),騎電動(dòng)車(chē)追甲,在距風(fēng)景區(qū)13.5千米處追上甲并同車(chē)前往風(fēng)景區(qū),若電動(dòng)車(chē)速度始終不變.設(shè)甲與家相距(千米),乙與家相距(千米),甲離開(kāi)家的時(shí)間為 (分鐘)、x之間的函數(shù)圖象如圖所示,結(jié)合圖象解答下列問(wèn)題:

1)求電動(dòng)車(chē)的速度;

2)求出甲步行的時(shí)間是多少分鐘?;

3)求乙返回到家時(shí),甲與家相距多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市盤(pán)山、黃崖關(guān)長(zhǎng)城、航母公園三景區(qū)是人們節(jié)假日游玩的熱點(diǎn)景區(qū).某中學(xué)對(duì)七年級(jí)(1)班學(xué)生今年暑假到這三景區(qū)游玩的計(jì)劃做了全面調(diào)查,調(diào)查分四個(gè)類(lèi)別,A游三個(gè)景區(qū);B:游兩個(gè)景區(qū);C:游一個(gè)景區(qū);D:不到這三個(gè)景區(qū)游玩.根據(jù)調(diào)查的結(jié)果繪制了不完全的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(如圖①、圖②)如下,請(qǐng)根據(jù)圖中所給的信息,解答下列問(wèn)題:

(1)求七年級(jí)(1)班學(xué)生人數(shù);

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)求扇形統(tǒng)計(jì)圖中表示“B類(lèi)別的圓心角的度數(shù);

(4)若該中學(xué)七年級(jí)有學(xué)生520人,求計(jì)劃暑假選擇A、B、C三個(gè)類(lèi)別出去游玩的學(xué)生有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案