【題目】閱讀下面的材料:
點A、B在數(shù)軸上分別表示實數(shù)a,b,A,B兩點之間的距離表示為|AB|
當(dāng)A、B兩點中有一點在原點時,設(shè)點A在原點,如圖①|AB|=|OB|=|b|=|a﹣b|
當(dāng)A、B兩點都不在原點時,
(1)如圖②,點A,B都在原點的右邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|
(2)如圖③,點A、B都在原點的左邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|
(3)如圖④,點A、B在原點的兩邊,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|
綜上所述,數(shù)軸上A、B兩點之間的距離|AB|=|a﹣b|
請用上面的知識解答下面的問題:
(1)數(shù)軸上表示﹣2和﹣4的兩點之間的距離是 ,數(shù)軸上表示1和﹣3的兩點之間的距離是 .
(2)數(shù)軸上表示x和﹣1的兩點A和B之間的距離是 ,如果|AB|=2,那么x為 .
(3)當(dāng)|x+1|+|x﹣2|=5時的整數(shù)x的值 .
(4)當(dāng)|x+1|+|x﹣2|取最小值時,相應(yīng)的x的取值范圍是 .
【答案】(1)2 4;(2)|x+1| 1或-3;(3)-2或3;(4)-1≤ x≤2.
【解析】
(1)(2)直接根據(jù)數(shù)軸上A、B兩點之間的距離|AB|=|a﹣b|.代入數(shù)值運用絕對值即可求任意兩點間的距離;
(3)根據(jù)題意分三種情況:當(dāng)x≤﹣1時,當(dāng)﹣1<x≤2時,當(dāng)x>2時,分別求出方程的解即可;
(4)根據(jù)絕對值的性質(zhì),可得到一個一元一次不等式組,通過求解,就可得出x的取值范圍.
(1)數(shù)軸上表示﹣2和﹣4的兩點之間的距離是|﹣2﹣(﹣4)|=2;
數(shù)軸上表示1和﹣3的兩點之間的距離是|1﹣(﹣3)|=4
故答案為:2,4
(2)數(shù)軸上x與-1的兩點間的距離為|x-(-1)|=|x+1|,如果|AB|=2,則x+1=±2,解得x=1或-3;
故答案為:|x+1|,1或-3
(3)解方程|x+1|+|x﹣2|=5,且x為整數(shù).
當(dāng)x+1>0,x-2>0,則(x+1)+(x-2)=5,解得x=3
當(dāng)x+1<0,x-2<0,則-(x+1)-(x-2)=5,解得x=-2
當(dāng)x+1與x-2異號,則等式不成立.
所以答案為:3或-2.
(4)根據(jù)題意得x+1≥0且x-2≤0,則-1≤x≤2;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,把一根繩子對折后得到的圖形為線段AB,從點P處把繩子剪斷,已知AP:BP=4:5,若剪斷后的各段繩子中最長的一段為80cm,則繩子的原長為________ cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C是AB的中點,D是BE的中點,
(1)AB=4cm,BE=3cm,則CD=____________cm;
(2)AB=4cm,DE=2cm,則AE=____________cm;
(3)AB=4cm,BE=2cm,則AD=____________cm;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綠水青山就是金山銀山,國家倡導(dǎo)全民植樹。在今年3月12日植樹節(jié)當(dāng)天,某校七年級一班48名學(xué)生全部參加了植樹活動,男生每人栽種4株,女生每人栽種3株,全班共栽種170株。
(1)該班男、女生各為多少人?
(2)學(xué)校選擇購買甲、乙兩種樹苗,甲樹苗 ,乙樹苗 .如果要使購買樹苗的錢不超過1200元,那么最多可以購買甲樹苗多少株?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點D作DE⊥AB,于點E
(1)求證:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AO為Rt△ABC的角平分線,∠ACB=90°,,以O為圓心,OC 為半徑的圓分別交AO,BC于點D,E,連接ED并延長交AC于點F.
(1)求證:AB是⊙O的切線;
(2)求的值。
(3)若⊙O的半徑為4,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,點 C 在以 AB 為直徑的⊙O 上,點 D 在 AB 的延長線上,∠BCD =∠A.
(1)求證:CD 為⊙O 的切線;
(2)過點 C 作 CE⊥AB 于點 E.若 CE = 2,cos D =,求 AD 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的兩個實數(shù)根.
(1)是否存在實數(shù)a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,請你說明理由;
(2)求使(x1+1)(x2+1)為正整數(shù)的實數(shù)a的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,EF∥AD,∠1=∠2,∠BAC=72 o,求∠AGD的度數(shù).
解:因為EF∥AD
所以∠2= ( )
又因為∠1=∠2
所以∠1=∠3
所以AB∥ ( )
所以∠BAC+ =180 o( )
因為∠BAC=72 o
所以∠AGD= ( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com