【題目】如圖,點(diǎn)A是雙曲線y=﹣在第二象限分支上的一個(gè)動(dòng)點(diǎn),連接AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為底作等腰△ABC,且∠ACB=120°,點(diǎn)C在第一象限,隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷變化,但點(diǎn)C始終在雙曲線y=上運(yùn)動(dòng),則k的值為_____.
【答案】3
【解析】分析:連接CO,過(guò)點(diǎn)A作AD⊥x軸于點(diǎn)D,過(guò)點(diǎn)C作CE⊥x軸于點(diǎn)E,證明△AOD∽△OCE,根據(jù)相似三角形的性質(zhì)求出△AOD和△OCE面積比,根據(jù)反比例函數(shù)圖象上點(diǎn)的特征求出S△AOD,得到S△EOC,求出k的值.
詳解:連接CO,過(guò)點(diǎn)A作AD⊥x軸于點(diǎn)D,過(guò)點(diǎn)C作CE⊥x軸于點(diǎn)E,
∵連接AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為底作等腰△ABC,且∠ACB=120°,
∴CO⊥AB,∠CAB=30°,
則∠AOD+∠COE=90°,
∵∠DAO+∠AOD=90°,
∴∠DAO=∠COE,
又∵∠ADO=∠CEO=90°,
∴△AOD∽△OCE,
∴=tan60°=,
∴,
∵點(diǎn)A是雙曲線y=-在第二象限分支上的一個(gè)動(dòng)點(diǎn),
∴S△AOD=×|xy|=,
∴S△EOC=,即×OE×CE=,
∴k=OE×CE=3,
故答案為:3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線.
(1)求證:△ADE≌△CBF;
(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形的對(duì)角線相交于點(diǎn),,.
(1)求證:四邊形是菱形;
(2)若將題設(shè)中“矩形”這一條件改為“菱形”,其余條件不變,則四邊形是__________形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料并解答問題:在一個(gè)三角形中,如果一個(gè)內(nèi)角的度數(shù)是另一個(gè)內(nèi)角度數(shù)的3倍,那么這樣的三角形我們稱為“3倍角三角形”例如:一個(gè)三角形三個(gè)內(nèi)角的度數(shù)分別是,這個(gè)三角形就是一個(gè)“3倍角三角形”.反之,若一個(gè)三角形是“3倍角三角形”,那么這個(gè)三角形的三個(gè)內(nèi)角中一定有一個(gè)內(nèi)角的度數(shù)是另一個(gè)內(nèi)角度數(shù)的3倍.
(1)如圖1,已知,在射線上取一點(diǎn),過(guò)點(diǎn)作交于點(diǎn).判斷是否是“3倍角三角形”,為什么?
(2)在(1)的條件下,以為端點(diǎn)畫射線,交線段于點(diǎn)(點(diǎn)不與點(diǎn)、點(diǎn)重合).若是“3倍角三角形”,求的度數(shù).
(3)如圖2,點(diǎn)在的邊上,連接,作的平分線交于點(diǎn),在上取一點(diǎn),使得,.若是“3倍角三角形”,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀思考
我們知道,在數(shù)軸上|a|表示數(shù)a所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離,這是絕對(duì)值的幾何意義,由此我們可進(jìn)一步地來(lái)研究數(shù)軸上任意兩個(gè)點(diǎn)之間的距離,一般地,如果數(shù)軸上兩點(diǎn)A、B 對(duì)立的數(shù)用a,b表示,那么這兩個(gè)點(diǎn)之間的距離AB=|a﹣b|.也可以用兩點(diǎn)中右邊的點(diǎn)所表示數(shù)的減去左邊的點(diǎn)所表示的數(shù)來(lái)計(jì)算,例如:數(shù)軸上P,Q兩點(diǎn)表示的數(shù)分別是﹣1和2,那么P,Q兩點(diǎn)之間的距離就是 PQ=2﹣(﹣1)=3.
啟發(fā)應(yīng)用
如圖,點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為a,點(diǎn)B對(duì)應(yīng)的數(shù)為b,且a、b滿足|a+3|+(b﹣2)2=0
(1)求線段AB的長(zhǎng);
(2)如圖,點(diǎn)C在數(shù)軸上對(duì)應(yīng)的數(shù)為x,且x是方程2x+1=x﹣8的解,
①求線段BC的長(zhǎng);
②在數(shù)軸上是否存在點(diǎn)P使PA+PB=BC?若存在,直接寫出點(diǎn)P對(duì)應(yīng)的數(shù):若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近期,我市持續(xù)出現(xiàn)霧霾天氣,給廣大市民的工作和生活造成了嚴(yán)重的影響.為此,“霧霾天氣的主要成因”就成為了某校環(huán)保小組調(diào)查研究的課題,他們隨機(jī)調(diào)查了部分市民,并對(duì)調(diào)查結(jié)果進(jìn)行了整理,繪制了如圖所示的不完整的統(tǒng)計(jì)圖表.請(qǐng)根據(jù)圖表中提供的信息解答下列問題:
級(jí)別 | 觀點(diǎn) | 頻數(shù)(人數(shù)) |
A | 大氣氣壓低,空氣不流動(dòng) | |
B | 地面灰塵大,空氣濕度低 | |
C | 汽車尾部排放 | |
D | 工廠造成污染 | |
E | 其他 |
調(diào)查結(jié)果扇形統(tǒng)計(jì)圖
(1)填空:______,______;
(2)求出扇形統(tǒng)計(jì)圖中E組所占的百分比以及扇形統(tǒng)計(jì)圖中區(qū)域D所對(duì)應(yīng)的扇形圓心角度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列變形中:
①由方程=2去分母,得x﹣12=10;
②由方程x=兩邊同除以,得x=1;
③由方程6x﹣4=x+4移項(xiàng),得7x=0;
④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).
錯(cuò)誤變形的個(gè)數(shù)是( )個(gè).
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知直線和相交于點(diǎn).是直角,平分.
(1)與的大小關(guān)系是 ,判斷的依據(jù)是 ;
(2)若,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m≠1的實(shí)數(shù)).其中正確結(jié)論的有( )
A. ①②③ B. ①③④ C. ③④⑤ D. ②③⑤
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com