【題目】如圖,菱形和菱形的邊長分別為和,,則圖中陰影部分的面積是( )
A. B. C. D.
【答案】A
【解析】
設(shè)BF交CE于點H,根據(jù)菱形的對邊平行,利用相似三角形對應(yīng)邊成比例列式求出CH,然后求出DH,根據(jù)菱形鄰角互補求出∠ABC=60°,再求出點B到CD的距離以及點G到CE的距離;然后根據(jù)陰影部分的面積=S△BDH+S△FDH,根據(jù)三角形的面積公式列式進(jìn)行計算即可得解.
如圖,設(shè)BF交CE于點H,
∵菱形ECGF的邊CE∥GF,
∴△BCH∽△BGF,
∴CH:FG=BC:BG,
即CH:4=2:6,
解得
所以,
∵
∴
∴點B到CD的距離為
點G到CE的距離為
∴陰影部分的面積=S△BDH+S△FDH,
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點,,,拋物線與直線交于點.
當(dāng)拋物線經(jīng)過點時,求它的表達(dá)式;
設(shè)點的縱坐標(biāo)為,求的最小值,此時拋物線上有兩點,,且,比較與的大小;
當(dāng)拋物線與線段有公共點時,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,點B、F、C、E在同一直線上,AC、DF相交于點G,AB⊥BE,垂足為B,DE⊥BE,垂足為E,且AC=DF,BF=EC.求證:
(1)△ABC≌△DEF;
(2)FG=CG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面一元二次方程的解法中,正確的是( )
A. (x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
B. (2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=
C. (x+2)2+4x=0,∴x1=2,x2=-2
D. x2=x 兩邊同除以x,得x=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,都為,,,…中的數(shù),若方程至少有一根也是,,,…中的數(shù),就稱該方程為“漂亮方程”,則“漂亮方程”的個數(shù)為( )
A. 8 B. 10 C. 12 D. 14
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的網(wǎng)格中有四條線段AB、CD、EF、GH(線段端點在格點上),
⑴選取其中三條線段,使得這三條線段能圍成一個直角三角形.
答:選取的三條線段為 .
⑵只變動其中兩條線段的位置,在原圖中畫出一個滿足上題的直角三角形(頂點仍在格點,并標(biāo)上必要的字母).
答:畫出的直角三角形為△ .
⑶所畫直角三角形的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AD平分∠BAC,過點D作AC的平行線交AB于點O,DE⊥AD交AB于點E.
(1)求證:點O是AE的中點;
(2)若點F是AC邊上一點,且OF=OA,連接EF,如圖2,判斷EF與AC的位置關(guān)系,并說明理由;
(3)在(2)的條件下,試探究線段AE、AF、AC之間滿足的等量關(guān)系,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知甲村和乙村靠近公路a、b,為了發(fā)展經(jīng)濟(jì),甲乙兩村準(zhǔn)備合建一個工廠,經(jīng)協(xié)商,工廠必須滿足以下要求:
(1)到兩村的距離相等;
(2)到兩條公路的距離相等.你能幫忙確定工廠的位置嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com