【題目】在平面直角坐標(biāo)系中,ABC的位置如圖,網(wǎng)格中小正方形的邊長(zhǎng)為1,點(diǎn)A坐標(biāo)為(12),請(qǐng)解答下列問題:

1)直接寫出點(diǎn)B,C兩點(diǎn)的坐標(biāo);

2)將ABC向下平移3個(gè)單位得到A1B1C1,作出平移后的A1B1C1

3)作出ABC繞點(diǎn)O的逆時(shí)針旋轉(zhuǎn)90°,得到A2B2C2,作出旋轉(zhuǎn)后的A2B2C2

【答案】1B43)、C5,1);(2)見解析;(3)見解析

【解析】

1)由圖可直接得出點(diǎn)B、C的坐標(biāo);
2)作出三個(gè)頂點(diǎn)平移后的對(duì)應(yīng)點(diǎn),再順次連接即可得;
3)分別作出三個(gè)頂點(diǎn)繞點(diǎn)O的逆時(shí)針旋轉(zhuǎn)90°得到的對(duì)應(yīng)點(diǎn),再首尾順次連接即可得.

1)由圖知,點(diǎn)B的坐標(biāo)為(43)、C5,1);

2)如圖所示,A1B1C1即為所求.

3)如圖所示,A2B2C2即為所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EABCD的邊CD的中點(diǎn),延長(zhǎng)AEBC的延長(zhǎng)線于點(diǎn)F.

(1)求證:ADE≌△FCE.

(2)若∠BAF=90°,BC=5,EF=3,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰Rt△ABC,BAC=90°,點(diǎn)EAC上(且不與點(diǎn)A、C重合.在ABC的外部作等腰Rt△CED,使CED=90°連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF

1求證AEF是等腰直角三角形;

2如圖2,CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)當(dāng)點(diǎn)E在線段BC上時(shí),連接AE,求證AF=AE

3如圖3,CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn)當(dāng)平行四邊形ABFD為菱形,CEDABC的下方時(shí),AB=2,CE=2求線段AE的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊的中點(diǎn),BEAC,垂足為點(diǎn)F,分析下列四個(gè)結(jié)論:①△AEF∽△CAB;CF=2AF;SAEF:SCAB=1:4;AF2=2EF2.其中正確的結(jié)論有( 。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)EF分別在邊AC、BC上)

1)若△CEF△ABC相似.

當(dāng)AC=BC=2時(shí),AD的長(zhǎng)為   ;

當(dāng)AC=3BC=4時(shí),AD的長(zhǎng)為   

2)當(dāng)點(diǎn)DAB的中點(diǎn)時(shí),△CEF△ABC相似嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于線段外一點(diǎn)和這條線段兩個(gè)端點(diǎn)連線所構(gòu)成的角叫做這個(gè)點(diǎn)關(guān)于這條線段的視角.如圖1,對(duì)于線段AB及線段AB外一點(diǎn)C,我們稱∠ACB為點(diǎn)C關(guān)于線段AB的視角.

如圖2,點(diǎn)Q在直線l上運(yùn)動(dòng),當(dāng)點(diǎn)Q關(guān)于線段AB的視角最大時(shí),則稱這個(gè)最大的視角為直線l關(guān)于線段AB視角

1)如圖3,在平面直角坐標(biāo)系中,A0,4),B2,2),點(diǎn)C坐標(biāo)為(﹣2,2),點(diǎn)C關(guān)于線段AB的視角為   度,x軸關(guān)于線段AB的視角為   度;

2)如圖4,點(diǎn)M是在x軸上,坐標(biāo)為(20),過點(diǎn)M作線段EFx軸,且EMMF1,當(dāng)直線ykxk≠0)關(guān)于線段EF的視角為90°,求k的值;

3)如圖5,在平面直角坐標(biāo)系中,P,2),Q+1,1),直線yax+ba0)與x軸的夾角為60°,且關(guān)于線段PQ的視角為45°,求這條直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=10cmBC=20cm,點(diǎn)PA開始沿AB邊向B點(diǎn)以1cm/s的速度移動(dòng),到達(dá)點(diǎn)B時(shí)停止.點(diǎn)Q從點(diǎn)B開始沿BC邊向C點(diǎn)以2cm/s的速度移動(dòng),到達(dá)點(diǎn)C時(shí)停止.如果P、Q分別從AB同時(shí)出發(fā),經(jīng)幾秒種△PBQ與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中條直線為,直線軸于點(diǎn),交軸于點(diǎn),直線軸于點(diǎn),過點(diǎn)軸的平行線交于點(diǎn),點(diǎn)關(guān)于軸對(duì)稱,拋物線三點(diǎn),下列判斷中:①;②;③拋物線關(guān)于直線對(duì)稱;④拋物線過點(diǎn);⑤四邊形,其中正確的個(gè)數(shù)有( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:sin﹣x=﹣sinxcos﹣x=cosx,sinx+y=sinxcosy+cosxsiny

據(jù)此判斷下列等式成立的是 (寫出所有正確的序號(hào))

①cos﹣60°=﹣;

②sin75°=

③sin2x=2sinxcosx;

④sinx﹣y=sinxcosy﹣cosxsiny

查看答案和解析>>

同步練習(xí)冊(cè)答案