【題目】如圖,EABCD的邊CD的中點,延長AEBC的延長線于點F.

(1)求證:ADE≌△FCE.

(2)若∠BAF=90°,BC=5,EF=3,求CD的長.

【答案】1)證明過程見解析;(28.

【解析】試題分析:(1)由平行四邊形的性質(zhì)得出AD∥BC,AB∥CD,證出∠DAE=∠F∠D=∠ECF,由AAS證明△ADE≌△FCE即可;(2)由全等三角形的性質(zhì)得出AE=EF=3,由平行線的性質(zhì)證出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的長.

試題解析:(1四邊形ABCD是平行四邊形, ∴AD∥BC,AB∥CD,

∴∠DAE=∠F,∠D=∠ECF, ∵EABCD的邊CD的中點, ∴DE=CE,

△ADE△FCE中,,∴△ADE≌△FCEAAS);

2∵ADE≌△FCE∴AE=EF=3, ∵AB∥CD, ∴∠AED=∠BAF=90°

ABCD中,AD=BC=5, ∴DE===4∴CD=2DE=8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為進一步建設(shè)秀美、宜居的生態(tài)環(huán)境,某村欲購買甲、乙、丙三種樹美化村莊,已知甲、乙丙三種樹的價格之比為2:2:3,甲種樹每棵200元,現(xiàn)計劃用210000元資金,購買這三種樹共1000棵

1求乙、丙兩種樹每棵各多少元?

2若購買甲種樹的棵樹是乙種樹的2倍,恰好用完計劃資金,求這三種樹各能購買多少棵?

3若又增加了10120元的購樹款,在購買總棵樹不變的前提下,求丙種樹最多可以購買多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在正方形ABCD中,GCD上一點,延長BCE,使CE=CG,連接BG并延長交DEF.

(1)求證:△BCG≌△DCE;

(2)將△DCE繞點D順時針旋轉(zhuǎn)90°得到△DAE′,判斷四邊形E′BGD是什么特殊四邊形,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若正方形EFGH由正方形ABCD繞某點旋轉(zhuǎn)得到,則可以作為旋轉(zhuǎn)中心的是(
A.M或O或N
B.E或O或C
C.E或O或N
D.M或O或C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情景:

如圖1,AB//CD,PAB=130°,PCD=120°,求∠APC的度數(shù).

小明的思路是:

過點PPE//AB,

∴∠PAB+APE=180°.

∵∠PAB=130°,∴∠APE=50°

AB//CD,PE//AB,PE//CD,

∴∠PCD+CPE=180°.

∵∠PCD=120°,∴∠CPE=60°

∴∠APC=APE+CPE=110°.

問題遷移:

如果ABCD平行關(guān)系不變,動點P在直線AB、CD所夾區(qū)域內(nèi)部運動時,∠PAB,PCD的度數(shù)會跟著發(fā)生變化.

(1)如圖3,當(dāng)動點P運動到直線AC右側(cè)時,請寫出∠PAB,PCD和∠APC之間的數(shù)量關(guān)系?并說明理由.

(2)如圖4,AQ,CQ分別平分∠PAB,PCD,那么∠AQC和角∠APC有怎擇的數(shù)量關(guān)系?

(3)如圖5,點P在直線AC的左側(cè)時,AQ,CQ仍然平分∠PAB,PCD,請直接寫出AQC和角∠APC的數(shù)量關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y= (x>0)的圖象與一次函 數(shù)y=﹣x+b的圖象分別交于A(1,3)、B兩點.

(1)求m、b的值;
(2)若點M是反比例函數(shù)圖象上的一動點,直線MC⊥x軸于C,交直線AB于點N,MD⊥y軸于D,NE⊥y軸于E,設(shè)四邊形MDOC、NEOC的面積分別為S1、S2 , S=S2﹣S1 , 求S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同慶中學(xué)為豐富學(xué)生的校園生活,準備從軍躍體育用品商店一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),若購買3個足球和2個籃球共需310元,購買2個足球和5個籃球共需500元.

(1)購買一個足球、一個籃球各需多少元?

(2)根據(jù)同慶中學(xué)的實際情況,需從軍躍體育用品商店一次性購買足球和籃球共96個,要求購買足球和籃球的總費用不超過5720元,這所中學(xué)最多可以購買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,BD平分∠ABCAC于點D,AE∥BDCB的延長線于點E.若∠E=35°,則∠BAC的度數(shù)為( 。

A. 40° B. 45° C. 60° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,∠BAC=60°,若⊙O的半徑OC為2,則弦BC的長為(
A.1
B.
C.2
D.2

查看答案和解析>>

同步練習(xí)冊答案