【題目】1是用繩索織成的一片網(wǎng)的一部分,小明探索這片網(wǎng)的結(jié)點數(shù)(V),網(wǎng)眼數(shù)(F),邊數(shù)(E)之間的關系,他采用由特殊到一般的方法進行探索,列表如下:

特殊網(wǎng)圖

結(jié)點數(shù)(V

4

6

9

12

網(wǎng)眼數(shù)(F

1

2

4

6

邊數(shù)(E

4

7

12

表中處應填的數(shù)字為_____;根據(jù)上述探索過程,可以猜想V,F,E之間滿足的等量關系為_____;

如圖2,若網(wǎng)眼形狀為六邊形,則VFE之間滿足的等量關系為___ 

【答案】17 V+FE=1 V+FE=1.

【解析】

根據(jù)表中數(shù)據(jù)可知,邊數(shù)E比結(jié)點數(shù)V與網(wǎng)眼數(shù)F的和小1,從而得到6個網(wǎng)眼時的邊數(shù);依據(jù)以上規(guī)律可得V+F-E=1;類比網(wǎng)眼為四邊形時的方法,可先羅列網(wǎng)眼數(shù)是1、2、3時的V、FE,從而得出三者間關系.

由表格數(shù)據(jù)可知,1個網(wǎng)眼時:4+1-4=1;

2個網(wǎng)眼時:6+2-7=1;

3個網(wǎng)眼時:9+4-12=1

4個網(wǎng)眼時:12+6-=1,故處應填的數(shù)字為17;

據(jù)此可知,V+F-E=1;

若網(wǎng)眼形狀為六邊形時,

一個網(wǎng)眼時:V=6,F=1E=6,此時V+F-E=6+1-6=1;

二個網(wǎng)眼時:V=10,F=2,E=11,此時V+F-E=10+2-11=1

三個網(wǎng)眼時:V=13,F=3E=15,此時V+F-E=13+3-15=1

故若網(wǎng)眼形狀為六邊形時,V,FE之間滿足的等量關系為:V+F-E=1

故答案為:17,V+F-E=1V+F-E=1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,BC=2AB=8,點D,E分別是邊BC,AC的中點,連接DE.將△EDC繞點C按順時針方向旋轉(zhuǎn),當△EDC旋轉(zhuǎn)到A,D,E三點共線時,線段BD的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們把兩條中線互相垂直的三角形稱為“中垂三角形”,例如圖1,圖2,圖3中,AF,BE是△ABC的中線,AF⊥BE,垂足為P,像△ABC這樣的三角形均為“中垂三角形”,設BC=a,AC=b,AB=c.

(1)【特例探索】
如圖1,當∠ABE=45°,c=2 時,a= , b=;如圖2,當∠ABE=30°,c=4時,a= , b=
(2)【歸納證明】
請你觀察(1)中的計算結(jié)果,猜想a2 , b2 , c2三者之間的關系,用等式表示出來,請利用圖3證明你發(fā)現(xiàn)的關系式;
(3)【拓展應用】
如圖4,在ABCD中,點E,F(xiàn),G分別是AD,BC,CD的中點,BE⊥EG,AD=2 ,AB=3.求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線AB:y=﹣x+b分別與x,y軸交于A(6,0)、B 兩點,過點B的直線交x軸負半軸于C,且OB:OC=3:1.

(1)求點B的坐標.

(2)求直線BC的解析式.

(3)直線 EF 的解析式為y=x,直線EFAB于點E,交BC于點 F,求證:SEBO=SFBO

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】水是人類的生命之源.為了鼓勵居民節(jié)約用水,相關部門實行居民生活用水階梯式計量水價政策.若居民每戶每月用水量不超過10立方米,每立方米按現(xiàn)行居民生活用水水價收費(現(xiàn)行居民生活用水水價=基本水價+污水處理費);若每戶每月用水量超過10立方米,則超過部分每立方米在基本水價基礎上加價100%,每立方米污水處理費不變.甲用戶4月份用水8立方米,繳水費27.6元;乙用戶4月份用水12立方米,繳水費46.3元.(注:污水處理的立方數(shù)=實際生活用水的立方數(shù))

(1)求每立方米的基本水價和每立方米的污水處理費各是多少元?

(2)如果某用戶7月份生活用水水費計劃不超過64元,該用戶7月份最多可用水多少立方米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小南身高為163cm,一張紙的厚度為0.09mm,現(xiàn)將這張紙連續(xù)對折(假設對折始終能成功),若連續(xù)對折次后,紙的厚度超過了小南的身高,那么的值最小是

A. 12 B. 13 C. 14 D. 15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線 x軸的負半軸交于點A,與y軸交于點B,連結(jié)AB.點C 在拋物線上,直線AC與y軸交于點D.

(1)求c的值及直線AC的函數(shù)表達式;
(2)點P在x軸的正半軸上,點Q在y軸正半軸上,連結(jié)PQ與直線AC交于點M,連結(jié)MO并延長交AB于點N,若M為PQ的中點.
①求證:△APM∽△AON;
②設點M的橫坐標為m , 求AN的長(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù) 的圖像與 軸交于 、 兩點,與 軸交于點 , .點 在函數(shù)圖像上, 軸,且 ,直線 是拋物線的對稱軸, 是拋物線的頂點.

圖 ① 圖②
(1)求 、 的值;
(2)如圖①,連接 ,線段 上的點 關于直線 的對稱點 恰好在線段 上,求點 的坐標;
(3)如圖②,動點 在線段 上,過點 軸的垂線分別與 交于點 ,與拋物線交于點 .試問:拋物線上是否存在點 ,使得 的面積相等,且線段 的長度最。咳绻嬖,求出點 的坐標;如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電信公司推出一款移動話費套餐,資費標準見下表:

套餐月費/

套餐內(nèi)容

套餐外資費

主叫限定時間/分鐘

被叫

主叫超時費 (元/分鐘)

58

50

免費

0.25

88

150

0.20

118

350

0.15

說明:①主叫:主動打電話給別人;被叫:接聽別人打進來的電話.

②若辦理的是月使用費為 58 元的套餐,主叫時間不超過 50 分鐘時,當月話費即 58 元;主叫時間為 60 分鐘,則當月話費為 58+0.25×(60-50)=60.5 元.

小文辦理的是月使用費為 88 元的套餐,亮亮辦理的是月使用費為 118 元的套餐.

(1)小文當月的主叫時間為 220 分鐘,則該月她的話費需多少元?

(2)某月小文和亮亮的主叫時間都為 m 分鐘 (m 350) ,請用含 m 的代數(shù)式表示該月他們的 話費差.

(3)某月小文和亮亮的話費相同,但主叫時間比亮亮少 100 分鐘,求小文和亮亮的主叫時間 分別為多少分鐘?

查看答案和解析>>

同步練習冊答案