【題目】如圖,已知在△ABC中,∠A=90
(1)請用圓規(guī)和直尺作出⊙P,使圓心P在AC邊上,且與AB,BC兩邊都相切(保留作圖痕跡,不寫作法和證明).
(2)若∠B=60,AB=3,求⊙P的面積.

【答案】
(1)解:如圖所示,則⊙P為所求作的圓.


(2)解:∵∠B=60°,BP平分∠ABC,

∴∠ABP=30°,

設(shè) ,則

,解得

,則 .


【解析】(1)由角平分線上的點到角的兩邊的距離相等易得,首先做角ABC的平分線BP交AC于P,點P即為所求圓的圓心,再以PA為半徑做圓即可。
(2)若∠B=60°由(1)可得BP為角平分線,所以∠ABP=30°,又AB=3,結(jié)合30°所對的直角邊等于斜邊的一半和勾股定理,易得半徑AP=,所以可求面積 S = π r 2 = ( ) 2 π = 3 π .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個長為8分米,寬為5分米,高為7分米的長方體上,截去一個長為6分米,寬為5分米,深為2分米的長方體后得到一個如圖所示的幾何體一只螞蟻要從該幾何體的頂點A處,沿著幾何體的表面到幾何體上和A相對的頂點B處吃食物,那么它需要爬行的最短路徑的長是 分米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種流感病毒,有一人患了這種流感,在每輪傳染中一人將平均傳給x人.

1)求第一輪后患病的人數(shù);(用含x的代數(shù)式表示)

2)在進(jìn)入第二輪傳染之前,有兩位患者被及時隔離并治愈,問第二輪傳染后總共是否會有21人患病的情況發(fā)生,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtAOBRtCOD中,∠AOB=∠COD90°,∠B40°,∠C60°,點D在邊OA上,將圖中的△COD繞點O按每秒10°的速度沿順時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,在第________秒時,邊CD恰好與邊AB平行.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,∠A=60°,BD、BE三等分∠ABCCD、CE三等分∠ACB,連接DE,則∠BDE=_____________°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了選擇1名車工參加加工直徑為10 mm的精密零件的技術(shù)比賽,隨機(jī)抽取甲、乙兩名車工加工的5個零件,現(xiàn)測得的結(jié)果如下表,請你比較、的大小(  )

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC邊在直線a上,將△ABC繞點A順時針旋轉(zhuǎn)到位置①可得到點P1 , 此時AP1= ;將位置①的三角形繞點P1順時針旋轉(zhuǎn)到位置②,可得到點P2 , 此時AP2=1+ ;將位置②的三角形繞點P2順時針旋轉(zhuǎn)到位置③,可得到點P3 , 此時AP3=2+ ;…,按此規(guī)律繼續(xù)旋轉(zhuǎn),直至得到點P2015為止.則AP2015=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】芳芳同學(xué)手中有一塊長方形紙板和一塊正方形紙板,其中長方形紙板的長為3 dm,寬為2 dm,且兩塊紙板的面積相等.

(1)求正方形紙板的邊長(結(jié)果保留根號).

(2)芳芳能否在長方形紙板上截出兩個完整的,且面積分別為2 dm2和3 dm2的正方形紙板?判斷并說明理由.(提示:≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣為了落實中央的強(qiáng)基惠民工程,計劃將某村的居民自來水管道進(jìn)行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成;若乙隊單獨施工則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊先合做15,那么余下的工程由甲隊單獨完成還需5

1)這項工程的規(guī)定時間是多少天?

2)已知甲隊每天的施工費用為6500,乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?

查看答案和解析>>

同步練習(xí)冊答案