【題目】在△ABC中,ABAC5,sinB,⊙O過點B、C兩點,且⊙O半徑r,則OA的長為_____

【答案】35

【解析】

ADBCD,由于ABAC5,根據(jù)等腰三角形的性質(zhì)得AD垂直平分BC,根據(jù)垂徑定理的推論得到點O在直線AD上,連結(jié)OB,在RtABD中,根據(jù)正弦的定義計算出AD4,根據(jù)勾股定理計算出BD3,再在RtOBD中,根據(jù)勾股定理計算出OD1,然后分類討論:①當點A與點OBC的兩側(cè),有OAAD+OD;②當點A與點OBC的同側(cè),有OAADOD,即求得OA的長.

解:如圖,作ADBCD,

ABAC5

AD垂直平分BC,

∴點O在直線AD上,

連結(jié)OB

RtABD中,sinABD,

AB5,∴AD4,

BD3,

RtOBD中,OB,BD3,

OD1,

當點A與點OBC的兩側(cè)時,如圖1OAAD+OD4+15;

當點A與點OBC的同側(cè)時,如圖2,OAADOD413,

OA的長為35

故答案為:35

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀:小明用下面的方法求的解.

解法 1:令,則x=t2,原方程化為t -3t2=0,解方程t -3t2=0,得t1=0t2=,

所以,將方程兩邊平方,得x=0

經(jīng)檢驗:x=0都是原方程的解,所以原方程的解為x=0

解法 2:移項,得 ,方程兩邊同時平方,得x=9x2,解方程x=9x2,得x=0

經(jīng)檢驗:x=0都是原方程的解,所以原方程的解為x=0

1)定義,根據(jù)定義寫出符合條件的方程;

2)求出(1)中寫出的方程的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,拋物線與軸交點坐標為,

1)如圖1,已知頂點坐標,選擇適當方法求拋物線的解析式;

2)如圖2,在(1)的條件下,在拋物線的對稱軸上求作一點,使的周長最小,并求出點的坐標;

3)如圖3,在(1)的條件下,將圖2中的對稱軸向左移動,交軸于點,與拋物線,線段的交點分別為點、,用含的代數(shù)式表示線段的長度,并求出當為何值時,線段最長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點,點在直線上運動,把點繞點逆時針旋轉(zhuǎn),點的對應(yīng)點為點,我們發(fā)現(xiàn)點隨點變化而變化.若點在運動變化過程中始終在拋物線的上方,設(shè)點的橫坐標為,則的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線⊙O相切于點D,過圓心OEF∥⊙OE、F兩點,點A⊙O上一點,連接AE,AF,并分別延長交直線B、C兩點;

1)求證:∠ABC+∠ACB=90°;

2)若⊙O的半徑,BD=12,求tan∠ACB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年,號稱千湖之省的湖北正遭受大旱,為提高學生環(huán)境意識,節(jié)約用水,某校數(shù)學教師編制了一道應(yīng)用題:為了保護水資源,某市制定一套節(jié)水的管理措施,其中對居民生活用水收費作如下規(guī)定:

月用水量(噸)

單價(元/噸)

不大于10噸部分

1.5

大于10噸不大于m噸部分(20≤m≤50)

2

大于m噸部分

3

(1)若某用戶六月份用水量為18噸,求其應(yīng)繳納的水費;

(2)記該用戶六月份用水量為噸,繳納水費為元,試列出的函數(shù)式;

(3)若該用戶六月份用水量為40噸,繳納水費元的取值范圍為,試求的取值范圍.

各位同學,請你也認真做一做,相信聰明的你一定會順利完成.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點上,點外一點.于點.連接于點,作于點,交于點,連接

1)求證:的切線;

2)若,,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線過點,頂點為M,與x軸交于AB兩點,DAB的中點,軸,交拋物線于點E,下列結(jié)論中正確的是(

A.拋物線的對稱軸是直線x=-3B.

C.D.四邊形ADEC是菱形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊用周長為米的籬笆圍成.已知墻長(如圖所示),設(shè)這個苗圃園垂直于墻的一邊長為米.

1)若苗圃園的面積為平方米,求的值;

2)若平行于墻的一邊長不小于米,這個苗圃園的面積有最大值嗎?如果有,求出最大值;如果沒有,請說明理由.

查看答案和解析>>

同步練習冊答案