【題目】如圖1:在Rt△ABC中,AB=AC,D為BC邊上一點(不與點B,C重合),試探索AD,BD,CD之間滿足的等量關系,并證明你的結論.小明同學的思路是這樣的:將線段AD繞點A逆時針旋轉90°,得到線段AE,連接EC,DE.繼續(xù)推理就可以使問題得到解決.
(1)請根據(jù)小明的思路,試探索線段AD,BD,CD之間滿足的等量關系,并證明你的結論;
(2)如圖2,在Rt△ABC中,AB=AC,D為△ABC外的一點,且∠ADC=45°,線段AD,BD,CD之間滿足的等量關系又是如何的,請證明你的結論;
(3)如圖3,已知AB是⊙O的直徑,點C,D是⊙O上的點,且∠ADC=45°.
①若AD=6,BD=8,求弦CD的長為 ;
②若AD+BD=14,求的最大值,并求出此時⊙O的半徑.
【答案】(1)CD2+BD2=2AD2,見解析;(2)BD2=CD2+2AD2,見解析;(3)①7,②最大值為,半徑為
【解析】
(1)先判斷出∠BAD=CAE,進而得出△ABD≌△ACE,得出BD=CE,∠B=∠ACE,再根據(jù)勾股定理得出DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,即可得出結論;
(2)同(1)的方法得,ABD≌△ACE(SAS),得出BD=CE,再用勾股定理的出DE2=2AD2,CE2=CD2+DE2=CD2+2AD2,即可得出結論;
(3)先根據(jù)勾股定理的出DE2=CD2+CE2=2CD2,再判斷出△ACE≌△BCD(SAS),得出AE=BD,
①將AD=6,BD=8代入DE2=2CD2中,即可得出結論;
②先求出CD=7,再將AD+BD=14,CD=7代入,化簡得出﹣(AD﹣)2+,進而求出AD,最后用勾股定理求出AB即可得出結論.
解:(1)CD2+BD2=2AD2,
理由:由旋轉知,AD=AE,∠DAE=90°=∠BAC,
∴∠BAD=∠CAE,
∵AB=AC,
∴△ABD≌△ACE(SAS),
∴BD=CE,∠B=∠ACE,
在Rt△ABC中,AB=AC,
∴∠B=∠ACB=45°,
∴∠ACE=45°,
∴∠DCE=∠ACB+∠ACE=90°,
根據(jù)勾股定理得,DE2=CD2+CE2=CD2+BD2,
在Rt△ADE中,DE2=AD2+AE2=2AD2,
∴CD2+BD2=2AD2;
(2)BD2=CD2+2AD2,
理由:如圖2,
將線段AD繞點A逆時針旋轉90°,得到線段AE,連接EC,DE,
同(1)的方法得,ABD≌△ACE(SAS),
∴BD=CE,在Rt△ADE中,AD=AE,
∴∠ADE=45°,
∴DE2=2AD2,
∵∠ADC=45°,
∴∠CDE=∠ADC+∠ADE=90°,
根據(jù)勾股定理得,CE2=CD2+DE2=CD2+2AD2,
即:BD2=CD2+2AD2;
(3)如圖3,過點C作CE⊥CD交DA的延長線于E,
∴∠DCE=90°,
∵∠ADC=45°,
∴∠E=90°﹣∠ADC=45°=∠ADC,
∴CD=CE,
根據(jù)勾股定理得,DE2=CD2+CE2=2CD2,
連接AC,BC,
∵AB是⊙O的直徑,
∴∠ACB=∠ADB=90°,
∵∠ADC=45°,
∴∠BDC=45°=∠ADC,
∴AC=BC,
∵∠DCE=∠ACB=90°,
∴∠ACE=∠BCD,
∴△ACE≌△BCD(SAS),
∴AE=BD,
①AD=6,BD=8,
∴DE=AD+AE=AD+BD=14,
∴2CD2=142,
∴CD=7,
故答案為7;
②∵AD+BD=14,
∴CD=7,
∴=AD(BD+×7)=AD(BD+7)
=ADBD+7AD=AD(14﹣AD)+7AD=﹣AD2+21AD=﹣(AD﹣)2+,
∴當AD=時,的最大值為,
∵AD+BD=14,
∴BD=14﹣=,
在Rt△ABD中,根據(jù)勾股定理得,AB=,
∴⊙O的半徑為OA=AB=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是學生小金家附近的一塊三角形綠化區(qū)的示意圖;為增強體質,他每天早晨都沿著綠化區(qū)周邊小路AB,BC,CA跑步(小路的寬度不計),觀測得點B在點A的南偏東30°方向上,點C在點A的南偏東60°的方向上,點B在點C的北偏西75°方向上,AC間距離為400米.
(1)求BC和AB;
(2)小金沿三角形綠化區(qū)的周邊小路跑一圈共跑了多少米?(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】科技改變生活,導航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學生乘車到C地開展研學游活動,車到達A地后,發(fā)現(xiàn)C地恰好在A地的正北方向,且距離A地20千米,導航顯示車輛應沿北偏東60°方向行駛至B地,再沿西北方向行駛一段距離才能到C地,求B、C兩地的距離(計算結果用根號表示,不取近似值).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是的直徑,點C、D在上,且AD平分,過點D作AC的垂線,與AC的延長線相交于E,與AB的延長線相交于點F,G為AB的下半圓弧的中點,DG交AB于H,連接DB、GB.
證明EF是的切線;
求證:;
已知圓的半徑,,求GH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某同學報名參加校運動會,有以下5個項目可供選擇:徑賽項目:100m,200m,分別用、、表示;田賽項目:跳遠,跳高分別用、表示.
該同學從5個項目中任選一個,恰好是田賽項目的概率為______;
該同學從5個項目中任選兩個,利用樹狀圖或表格列舉出所有可能出現(xiàn)的結果,并求恰好是一個田賽項目和一個徑賽項目的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形MNPQ放置在矩形ABCD中,使點M,N分別在AB,AD邊上滑動,若MN=6,PN=4,在滑動過程中,點A與點P的距離AP的最大值為( 。
A. 4 B. 2 C. 7 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;
(2)請畫出△ABC關于原點對稱的△A2B2C2;
(3)在x軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,.
(1)如圖①,點在斜邊上,以點為圓心,長為半徑的圓交于點,交于點,與邊相切于點.求證:;
(2)在圖②中作,使它滿足以下條件:
①圓心在邊上;②經過點;③與邊相切.
(尺規(guī)作圖,只保留作圖痕跡,不要求寫出作法)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC的垂直平分線EF分別交BC,AD于點E,F,若BE=3,AF=5,則AC的長為( )
A. B. C. 10D. 8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com