【題目】如圖,AB為⊙O的直徑,點PAB延長線上的一點,過點P作⊙O的切線PE,切點為M,過AB兩點分別作PE的垂線AC、BD,垂足分別為C、D,連接AM,則下列結論正確的是___________.(寫出所有正確結論的序號)

AM平分∠CAB;

AM2ACAB

③若AB4,∠APE30°,則的長為

④若AC3,BD1,則有CMDM.

【答案】①②④

【解析】

連接OM,由切線的性質(zhì)可得OMPC,繼而得OMAC,再根據(jù)平行線的性質(zhì)以及等邊對等角即可求得∠CAM=∠OAM,由此可判斷①;通過證明△ACM∽△AMB,根據(jù)相似三角形的對應邊成比例可判斷②;求出∠MOP60°,利用弧長公式求得的長可判斷③;由BDPC,ACPC,OMPC,可得BDAC//OM,繼而可得PB=OB=AOPD=DM=CM,進而有OM=2BD2,在RtPBD中,PB=BO=OM=2,利用勾股定理求出PD的長,可得CMDMDP,由此可判斷④.

連接OM

PE為⊙O的切線,

OMPC,

ACPC,

OMAC,

∴∠CAM=∠AMO,

OAOM,

OAM=∠AMO,

∴∠CAM=∠OAM,即AM平分∠CAB,故①正確;

AB為⊙O的直徑,

∴∠AMB90°,

∵∠CAM=∠MAB,∠ACM=∠AMB

∴△ACM∽△AMB,

,

AM2ACAB,故②正確;

∵∠APE30°

∴∠MOP=∠OMP﹣∠APE90°30°60°,

AB4,

OB2

的長為,故③錯誤;

BDPCACPC,OMPC,

BDAC//OM,

∴△PBD∽△PAC

,

PBPA,

又∵AO=BO,AO+BO=ABAB+PB=PA,

PB=OB=AO,

又∵BDAC//OM,

PD=DM=CM

OM=2BD2,

RtPBD中,PB=BO=OM=2

PD==,

CMDMDP,故④正確,

故答案為:①②④.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(定義)若一個四邊形恰好關于其中一條對角線所在的直線對稱,則我們將這個四邊形叫做鏡面四邊形.

(理解)(1)下列說法是否正確(對的打,錯的打×

①平行四邊形是一個鏡面四邊形   

②鏡面四邊形的面積等于對角線積的一半.   

2)如圖(1),請你在4×4的網(wǎng)格(每個小正方形的邊長為1)中畫出一個鏡面四邊形,使它圖(1)的頂點在格點上,且有一邊長為

(應用)(3)如圖(2),已知鏡面四邊形ABCD,∠BAD60°,∠ABC90°AB≠BC,PAD上一點,AEBP的延長線上取一點F,使EFBE,連接AF,作∠FAD的平分線AGBFG,CMBFM,連接CG

①求∠EAG的度數(shù).

②比較BMEG的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某同學報名參加校運動會,有以下5個項目可供選擇:徑賽項目:100m,200m分別用、、表示;田賽項目:跳遠,跳高分別用、表示

該同學從5個項目中任選一個,恰好是田賽項目的概率為______

該同學從5個項目中任選兩個,利用樹狀圖或表格列舉出所有可能出現(xiàn)的結果,并求恰好是一個田賽項目和一個徑賽項目的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標分別為A1,1),B4,2),C3,4).

1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;

2)請畫出△ABC關于原點對稱的△A2B2C2

3)在x軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中 過點A作AEDC,垂足為E,連接BE,F(xiàn)為BE上一點,且AFE=D.

(1)求證:ABF∽△BEC;

(2)若AD=5,AB=8,sinD=,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,

1)如圖①,點在斜邊上,以點為圓心,長為半徑的圓交于點,交于點,與邊相切于點.求證:

2)在圖②中作,使它滿足以下條件:

①圓心在邊上;②經(jīng)過點;③與邊相切.

(尺規(guī)作圖,只保留作圖痕跡,不要求寫出作法)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的頂點A,Bx軸的正半軸上,反比例函數(shù)y=在第一象限內(nèi)的圖象與直線y=x交于點D,且反比例函數(shù)y=BC于點EAD=3

1)求D點的坐標及反比例函數(shù)的關系式;

2)若矩形的面積是24,請寫出CDE的面積(不需要寫解答過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x2+bx+cx軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內(nèi)的一個動點,且點P的橫坐標為t.

(1)求拋物線的表達式;

(2)設拋物線的對稱軸為l,lx軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.

(3)如圖2,連接BC,PB,PC,設PBC的面積為S.

①求S關于t的函數(shù)表達式;

②求P點到直線BC的距離的最大值,并求出此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】天門山索道是世界最長的高山客運索道,位于張家界天門山景區(qū).在一次檢修維護中,檢修人員從索道A處開始,沿ABC路線對索道進行檢修維護.如圖:已知米,米,AB與水平線的夾角是,BC與水平線的夾角是.求:本次檢修中,檢修人員上升的垂直高度是多少米?(結果精確到1米,參考數(shù)據(jù):)

查看答案和解析>>

同步練習冊答案