2.依次填入下列橫線上的成語與句意最貼切的一組是
①故宮博物館的珍寶箱里,陳列著各種奇珍異寶,古玩文物,令人 。
②玉器廠展品室里陳列著鳥獸、花卉、人物等各種玉雕展品,神態(tài)各異,栩栩如生,真是 。
③汽車向神農(nóng)架山區(qū)奔馳,只見奇峰異嶺撲面而來,令人 。
④貨柜上擺滿了具有傳統(tǒng)特色的珠寶,翡翠、玉雕、字畫,品種齊全,真是 。
A.應(yīng)接不暇 琳瑯滿目 目不暇接 美不勝收 B.目不暇接 琳瑯滿目 應(yīng)接不暇 美不勝收
C.應(yīng)接不暇 美不勝收 目不暇接 琳瑯滿目 D.目不暇接 美不勝收 應(yīng)接不暇 琳瑯滿目
1.下列各句中加點(diǎn)的成語的使用,恰當(dāng)?shù)囊痪涫?
A.面對光怪陸離的現(xiàn)代觀念,他們能從現(xiàn)實(shí)生活的感受出發(fā),汲取西方藝術(shù)的精華,積極探索新的藝術(shù)語言。
B.幾乎所有造假者都是這樣,隨便找?guī)组g房子,拉上幾個(gè)人就開始生產(chǎn),于是大量的垃圾食品廠就雨后春筍般地冒出來了。
C.整改不關(guān)是說在口頭上,更要落實(shí)到行動上,相信到下一次群眾評議的時(shí)候,大家對機(jī)關(guān)作風(fēng)的變化一定都會有口皆碑。
D.加入世貿(mào)組織(WTO)后汽車價(jià)格變化備受關(guān)注,但作為市場主力的幾家汽車大廠,三四個(gè)月以來卻一直偃旗息鼓,沒有太大動作。
4.框圖屬于新增內(nèi)容,將以考察考生的實(shí)際應(yīng)用能力為主,考查考生的知識遷移能力。
3.高考對于復(fù)數(shù)的考察主要以復(fù)數(shù)的四則運(yùn)算為主,按新課標(biāo)的要求高考將不再考察共軛復(fù)數(shù)、復(fù)數(shù)的模等知識點(diǎn);
2.推理證明題主要和其它知識結(jié)合到一塊,屬于知識綜合題,解決此類題目時(shí)要建立合理的解題思路;
1.簡易邏輯的重點(diǎn)內(nèi)容是有關(guān)“充要條件”、命題真?zhèn)蔚脑囶}。主要是對數(shù)學(xué)概念有準(zhǔn)確的記憶和深層次的理解,試題以選擇題、填空題為主,難度不大,要求對基本知識、基本題型,求解準(zhǔn)確熟練;
題型1:判斷命題的真值
例1.寫出由下述各命題構(gòu)成的“p或q”,“p且q”,“非p”形式的復(fù)合命題,并指出所構(gòu)成的這些復(fù)合命題的真假。
(1)p:9是144的約數(shù),q:9是225的約數(shù)。
(2)p:方程x2-1=0的解是x=1,q:方程x2-1=0的解是x=-1;
(3)p:實(shí)數(shù)的平方是正數(shù),q:實(shí)數(shù)的平方是0.
解析:由簡單命題構(gòu)成復(fù)合命題,一定要檢驗(yàn)是否符合“真值表”如果不符要作語言上的調(diào)整。
(1)p或q:9是144或225的約數(shù);
p且q:9是144與225的公約數(shù),(或?qū)懗桑?是144的約數(shù),且9是225的約數(shù));
非p:9不是144的約數(shù).
∵p真,q真,∴“p或q”為真,“p且q” 為真,而“非p”為假.
(2)p或q:方程x2-1=0的解是x=1,或方程x2-1=0的解是x=-1(注意,不能寫成“方程x2-1=0的解是x=±1”,這與真值表不符);
p且q:方程x2-1=0的解是x=1,且方程x2-1=0的解是x=-1;
非p:方程x2-1=0的解不都是x=1(注意,在命題p中的“是”應(yīng)理解為“都是”的意思);
∵p假,q假,∴“p或q”與,“p且q” 均為假,而“非p”為真.
(3)p或q:實(shí)數(shù)的平方都是正數(shù)或?qū)崝?shù)的平方都是0;
p且q:實(shí)數(shù)的平方都是正數(shù)且實(shí)數(shù)的平方都是0;
非p:實(shí)數(shù)的平方不都是正數(shù),(或:存在實(shí)數(shù),其平方不是正數(shù));
∵p假,q假,∴“p或q”與“p且q” 均為假,而“非p”為真.
點(diǎn)評:在命題p或命題q的語句中,由于中文表達(dá)的習(xí)慣常常會有些省略,這種情況下應(yīng)作詞語上的調(diào)整。
題型2:條件
例2.(1)(2005北京2)“”是“直線相互垂直”的( )
A.充分必要條件 B.充分而不必要條件
C.必要而不充分條件 D.既不充分也不必要條件
答案:B;
解析:當(dāng)時(shí)兩直線斜率乘積為從而可得兩直線垂直,當(dāng)時(shí)兩直線一條斜率為0一條斜率不存在,但兩直線仍然垂直.因此是題目中給出的兩條直線垂直的充分但不必要條件。
點(diǎn)評:對于兩條直線垂直的充要條件①都存在時(shí)②中有一個(gè)不存在另一個(gè)為零對于②這種情況多數(shù)考生容易忽略。
(2)(2005湖南6)設(shè)集合A={x|<0,B={x || x -1|<a,若“a=1”是“A∩B≠”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分又不必要條件
答案:A;
解析:由題意得A:-1<x<1,B:1-a<x<a+1,
1)由a=1。A:-1<x<1.B:0<x<2。
則A成立,即充分性成立。
2)反之:A,不一定推得a=1,如a可能為。
綜合得“a=1”是: A”的充分非必要條件,故選A。
點(diǎn)評:本題考查分式不等式,絕對值不等式的解法,充分必要條件等知識。
題型3:四種命題
例3.(1)(2005江蘇13)命題“若a>b,則2a>2b-1”的否命題為 ;
(2)判斷命題:“若沒有實(shí)根,則”的真假性。
解析:(1)答案:若;
由題意原命題的否命題為“若”。
(2)很可能許多同學(xué)會認(rèn)為它是假命題(原因m=0時(shí)顯然方程有根),而它的逆否命題:“若有實(shí)根”,顯然為真,其實(shí)不然,由沒實(shí)根可推得,而的真子集,由,故原命題為真,其實(shí),用逆否命題很容易判斷它是真命題;
點(diǎn)評:本題考查了命題間的關(guān)系,由原命題寫出其否命題。
題型4:全稱命題與特稱命題
例4.命題p:“有些三角形是等腰三角形”,則┐p是( )
A.有些三角形不是等腰三角形
B.所有三角形是等腰三角形
C.所有三角形不是等腰三角形
D.所有三角形是等腰三角形
解析:像這種存在性命題的否定命題也有其規(guī)律:命題p:“存在使P(x)成立”,┐p為:“對任意”,它恰與全稱性命題的否定命題相反,故的答案為C。
點(diǎn)評:簡易邏輯題,比較抽象,不少學(xué)生在有些問題的看法上常出現(xiàn)一些自己也說不清道不明的疑惑,但要依據(jù)具體的規(guī)則進(jìn)行詳細(xì)的處理。
題型5:合情推理
例5.(1)觀察圓周上n個(gè)點(diǎn)之間所連的弦,發(fā)現(xiàn)兩個(gè)點(diǎn)可以連一條弦,3個(gè)點(diǎn)可以連3條弦,4個(gè)點(diǎn)可以連6條弦,5個(gè)點(diǎn)可以連10條弦,你由此可以歸納出什么規(guī)律?
(2)把下面在平面內(nèi)成立的結(jié)論類比推廣到空間,并判斷類比的結(jié)論是否成立:
1)如果一條直線與兩條平行直線中的一條相交,則必于另一條相交。
2)如果兩條直線同時(shí)垂直與第三條直線,則這兩條直線平行。
解析:(1)設(shè)為個(gè)點(diǎn)可連的弦的條數(shù),則
(2)
1)一個(gè)平面如和兩個(gè)平行平面中的一個(gè)相交,則必然和另一個(gè)也相交,次結(jié)論成立;
2)若兩個(gè)平面同時(shí)垂直第三個(gè)騙馬,則這兩個(gè)平面也相互平行,此結(jié)論不成立。
點(diǎn)評:當(dāng)前提為真,結(jié)論可能為真的推理。一定要理解合情推理的必要性。
題型6:演繹推理
例6.(06年天津)如圖,在五面體中,點(diǎn)是矩形的對角線的交點(diǎn),面是等邊三角形,棱。
(1)證明//平面;
(2)設(shè),證明平面。
解析:(Ⅰ)證明:取CD中點(diǎn)M,連結(jié)OM.
在矩形ABCD中,,又,
則,連結(jié)EM,于是四邊形EFOM為平行四邊形.
又平面CDE,切EM平面CDE,∵FO∥平面CDE
(Ⅱ)證明:連結(jié)FM,由(Ⅰ)和已知條件,在等邊△CDE中,
且。
因此平行四邊形EFOM為菱形,從而EO⊥FM而FM∩CD=M,∴CD⊥平面EOM,從而CD⊥EO.而,所以EO⊥平面CDF。
點(diǎn)評:本小題考查直線與平面平行、直線與平面垂直等基礎(chǔ)知識,考查空間想象能力和推理論證能力。
題型7:特殊證法
例7.(1)用反證法證明:如果a>b>0,那么;
(2)(06全國II)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且方程x2-anx-an=0有一根為Sn-1,n=1,2,3,…。
(Ⅰ)求a1,a2;(Ⅱ){an}的通項(xiàng)公式。
解析:(1)假設(shè)不大于,則或者<,或者=。
∵a>0,b>0,∴<<,<
,a<b;
=a=b.這些都同已知條件a>b>0矛盾,∴.
證法二(直接證法),
∵a>b>0,∴a - b>0即,
∴,∴。
(2)(Ⅰ)當(dāng)n=1時(shí),x2-a1x-a1=0有一根為S1-1=a1-1,
于是(a1-1)2-a1(a1-1)-a1=0,解得a1=。
當(dāng)n=2時(shí),x2-a2x-a2=0有一根為S2-1=a2-,
于是(a2-)2-a2(a2-)-a2=0,解得a1=。
(Ⅱ)由題設(shè)(Sn-1)2-an(Sn-1)-an=0,Sn2-2Sn+1-anSn=0。
當(dāng)n≥2時(shí),an=Sn-Sn-1,代入上式得Sn-1Sn-2Sn+1=0 、
由(Ⅰ)知S1=a1=,S2=a1+a2=+=。
由①可得S3=,由此猜想Sn=,n=1,2,3,…
下面用數(shù)學(xué)歸納法證明這個(gè)結(jié)論
(i)n=1時(shí)已知結(jié)論成立;
(ii)假設(shè)n=k時(shí)結(jié)論成立,即Sk=,
當(dāng)n=k+1時(shí),由①得Sk+1=,即Sk+1=,
故n=k+1時(shí)結(jié)論也成立.
綜上,由(i)、(ii)可知Sn=對所有正整數(shù)n都成立,
于是當(dāng)n≥2時(shí),an=Sn-Sn-1=-=,
又n=1時(shí),a1==,所以{an}的通項(xiàng)公式an=,n=1,2,3,…
點(diǎn)評:要應(yīng)用好反證法、數(shù)學(xué)歸納法證明一些涉及代數(shù)、不等式、幾何的結(jié)論。
題型8:復(fù)數(shù)的概念及性質(zhì)
例8.(1)(福建卷)設(shè)a、b、c、d∈R,則復(fù)數(shù)(a+bi)(c+di)為實(shí)數(shù)的充要條件是
A.ad-bc=0 B.ac-bd=0 C. ac+bd=0 D.ad+bc=0
(2)(北京卷)在復(fù)平面內(nèi),復(fù)數(shù)對應(yīng)的點(diǎn)位于
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
解析:(1)復(fù)數(shù)=為實(shí)數(shù),∴,選D;
(2)解:故選D;
點(diǎn)評:復(fù)數(shù)的概念和性質(zhì)是高考對復(fù)數(shù)部分的一個(gè)考點(diǎn),屬于比較基本的題目,主要考察復(fù)數(shù)的的分類和幾何性質(zhì)。
題型9:復(fù)數(shù)的運(yùn)算
例9.(1)(06浙江卷)已知( )
(A)1+2i (B) 1-2i (C)2+i (D)2-i
(2)(湖北卷)設(shè)為實(shí)數(shù),且,則 。
解析:(1),由、是實(shí)數(shù),得,
∴,故選擇C。
(2),
而 所以,解得x=-1,y=5,
所以x+y=4。
點(diǎn)評:本題考查復(fù)數(shù)的運(yùn)算及性質(zhì),基礎(chǔ)題。
題型10:框圖
例10.(1)方案1:派出調(diào)研人員赴北京、上海、廣州調(diào)研,待調(diào)研人員回來后決定生產(chǎn)數(shù)量;
方案2:商家如戰(zhàn)場!抓緊時(shí)間搞好調(diào)研,然后進(jìn)行生產(chǎn),調(diào)研為此項(xiàng)目的的瓶頸,因此需要添加力量,齊頭并進(jìn)搞調(diào)研,以便提前結(jié)束調(diào)研,盡早投產(chǎn)使產(chǎn)品占領(lǐng)市場。
(2)公司人事結(jié)構(gòu)圖
解析:(1)方案1:派出調(diào)研人員赴北京、上海、廣州調(diào)研,待調(diào)研人員回來后決定生產(chǎn)數(shù)量。
方案2: 商家如戰(zhàn)場!抓緊時(shí)間搞好調(diào)研,然后進(jìn)行生產(chǎn),調(diào)研為此項(xiàng)目的的瓶頸,因此需要添加力量,齊頭并進(jìn)搞調(diào)研,以便提前結(jié)束調(diào)研,盡早投產(chǎn)使產(chǎn)品占領(lǐng)市場。
于是:
(2)
點(diǎn)評:建立合理的結(jié)構(gòu)圖和流程圖解決實(shí)際問題,要形成良好的書寫習(xí)慣遵循從上到下、從左到右的規(guī)則。
4.框圖
(1)結(jié)構(gòu)圖
首先,你要對所畫結(jié)構(gòu)圖的每一部分有一個(gè)深刻的理解和透徹的掌握,從頭止尾抓住主要脈絡(luò)進(jìn)行分解,然后將每一步分解進(jìn)行歸納與提煉,形成一個(gè)個(gè)知識點(diǎn)并將其逐一地寫在矩形框內(nèi)。最后,按其內(nèi)在的邏輯順序?qū)⑺鼈兣帕衅饋聿⒂镁段相連,這樣就畫成了知識結(jié)構(gòu)圖。
認(rèn)識結(jié)構(gòu)圖:由構(gòu)成系統(tǒng)的若干要素和表達(dá)各要素之間關(guān)系的連線構(gòu)成。
繪制結(jié)構(gòu)圖的步驟:1)先確定組成系統(tǒng)的基本要素,以及這些要素之間的關(guān)系;2)處理好“上位”與“下位”的關(guān)系;“下位”要素比“上位”要素更為具體, “上位”要素比“下位”要素更為抽象。3)再逐步細(xì)化各層要素;4)畫出結(jié)構(gòu)圖,表示整個(gè)系統(tǒng)。
(2)流程圖
繪制流程圖的一般過程:首先,用自然語言描述流程步驟;其次,分析每一步驟是否可以直接表達(dá),或需要借助于邏輯結(jié)構(gòu)來表達(dá);再次,分析各步驟之間的關(guān)系;最后,畫出流程圖表示整個(gè)流程。
鑒于用自然語言描述算法所出現(xiàn)的種種弊端,人們開始用流程圖來表示算法,這種描述方法既避免了自然語言描述算法的拖沓冗長,又消除了起義性,且能清晰準(zhǔn)確地表述該算法的每一步驟,因而深受歡迎。
設(shè)計(jì)算法解決問題的主要步驟:
第一步、用自然語言描述算法;
算法可以用自然語言來描述,但為了使算法的程序或步驟表達(dá)得更為直觀,我們更經(jīng)常地用圖形方式來表示它。
第二步、畫出程序框圖表達(dá)算法;
第三步、寫出計(jì)算機(jī)相應(yīng)的程序并上機(jī)實(shí)現(xiàn)。
3.?dāng)?shù)系的擴(kuò)充與復(fù)數(shù)的引入
形如a+bi(a,b的數(shù),我們把它們叫做復(fù)數(shù),全體復(fù)數(shù)所形成的集合叫做復(fù)數(shù)集,一般用字母C表示,其中a叫做復(fù)數(shù)的實(shí)部,b叫做復(fù)數(shù)的虛部。
復(fù)數(shù)的加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;復(fù)數(shù)的加法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;復(fù)數(shù)的乘法法則:(a+bi)(c+di)=(ac-bd)+(ad+bc)i;復(fù)數(shù)的除法法則:(a+bi)(c+di)=== =+;
2.推理與證明
(1)合情推理
根據(jù)一類事物的部分對象具有某種性質(zhì),推出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理(簡稱歸納)。歸納是從特殊到一般的過程,它屬于合情推理;
根據(jù)兩類不同事物之間具有某些類似(或一致)性,推測其中一類事物具有與另一類事物類似(或相同)的性質(zhì)的推理,叫做類比推理(簡稱類比)。
類比推理的一般步驟:
(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想);(3)一般地,事物之間的各個(gè)性質(zhì)之間并不是孤立存在的,而是相互制約的。如果兩個(gè)事物在某些性質(zhì)上相同或類似,那么它們在另一些性質(zhì)上也可能相同或類似,類比的結(jié)論可能是真的;(4)在一般情況下,如果類比的相似性越多,相似的性質(zhì)與推測的性質(zhì)之間越相關(guān),那么類比得出的命題就越可靠。
(2)演繹推理
分析上述推理過程,可以看出,推理的滅每一個(gè)步驟都是根據(jù)一般性命題(如“全等三角形”)推出特殊性命題的過程,這類根據(jù)一般性的真命題(或邏輯規(guī)則)導(dǎo)出特殊性命題為真的推理,叫做演繹推理。演繹推理的特征是:當(dāng)前提為真時(shí),結(jié)論必然為真。
(3)證明
反證法:要證明某一結(jié)論A是正確的,但不直接證明,而是先去證明A的反面(非A)是錯(cuò)誤的,從而斷定A是正確的即反證法就是通過否定命題的結(jié)論而導(dǎo)出矛盾來達(dá)到肯定命題的結(jié)論,完成命題的論證的一種數(shù)學(xué)證明方法。
反證法的步驟:1)假設(shè)命題的結(jié)論不成立,即假設(shè)結(jié)論的反面成立;2)從這個(gè)假設(shè)出發(fā),通過推理論證,得出矛盾;3)由矛盾判定假設(shè)不正確,從而肯定命題的結(jié)論正確。
注意:可能出現(xiàn)矛盾四種情況:①與題設(shè)矛盾;②與反設(shè)矛盾;③與公理、定理矛盾④在證明過程中,推出自相矛盾的結(jié)論。
分析法:證明不等式時(shí),有時(shí)可以從求證的不等式出發(fā),分析使這個(gè)不等式成立的條件,把證明不等式轉(zhuǎn)化為判定這些條件是否具備的問題,如果能夠肯定這些條件都已具備,那么就可以斷定原不等式成立,這種方法通常叫做分析法。
用分析法證明不等式的邏輯關(guān)系是:
分析法的思維特點(diǎn)是:執(zhí)果索因;
分析法的書寫格式: 要證明命題B為真,只需要證明命題為真,
從而有……,這只需要證明命題為真,從而又有……
這只需要證明命題A為真,而已知A為真,故命題B必為真。
綜合法:利用某些已經(jīng)證明過的不等式(例如算術(shù)平均數(shù)與幾何平均數(shù)定理)和不等式的性質(zhì)推導(dǎo)出所要證明的不等式成立,這種證明方法通常叫做綜合法,
用綜合法證明不等式的邏輯關(guān)系是:
綜合法的思維特點(diǎn)是:由因?qū)Ч,即由已知條件出發(fā),利用已知的數(shù)學(xué)定理、性質(zhì)和公式,推出結(jié)論的一種證明方法。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com