段上.且(為常數(shù)且). 查看更多

 

題目列表(包括答案和解析)

(滿分16分)

某醫(yī)藥研究所開發(fā)一種新藥,據(jù)檢測(cè),如果成人按規(guī)定的劑量服用,服藥后每毫升血液中的含藥量為(微克)與服藥后的時(shí)間(小時(shí))之間近似滿足如圖所示的曲線,其中OA 是線段,曲線 ABC 是函數(shù))的圖象,且是常數(shù).

(1)寫出服藥后y與x的函數(shù)關(guān)系式;

(2)據(jù)測(cè)定:每毫升血液中含藥量不少于2 微克時(shí)治療疾病有效.若某病人第一次服藥時(shí)間為早上 6 : 00 ,為了保持療效,第二次服藥最遲應(yīng)該在當(dāng)天的幾點(diǎn)鐘?

(3)若按(2)中的最遲時(shí)間服用第二次藥,則第二次服藥3個(gè)小時(shí)后,該病人每毫升血液中含藥量為多少微克。(結(jié)果用根號(hào)表示)

 

查看答案和解析>>

(滿分16分)
某醫(yī)藥研究所開發(fā)一種新藥,據(jù)檢測(cè),如果成人按規(guī)定的劑量服用,服藥后每毫升血液中的含藥量為(微克)與服藥后的時(shí)間(小時(shí))之間近似滿足如圖所示的曲線,其中OA 是線段,曲線 ABC 是函數(shù))的圖象,且是常數(shù).

(1)寫出服藥后y與x的函數(shù)關(guān)系式;
(2)據(jù)測(cè)定:每毫升血液中含藥量不少于2 微克時(shí)治療疾病有效.若某病人第一次服藥時(shí)間為早上 6 : 00 ,為了保持療效,第二次服藥最遲應(yīng)該在當(dāng)天的幾點(diǎn)鐘?
(3)若按(2)中的最遲時(shí)間服用第二次藥,則第二次服藥3個(gè)小時(shí)后,該病人每毫升血液中含藥量為多少微克。(結(jié)果用根號(hào)表示)

查看答案和解析>>

(理)已知?jiǎng)狱c(diǎn)分別在軸、軸上,且滿足,點(diǎn)在線段上,且

是不為零的常數(shù))。設(shè)點(diǎn)的軌跡為曲線。

(1)   求點(diǎn)的軌跡方程;

(2)   若,點(diǎn)上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)動(dòng)點(diǎn)(不在坐標(biāo)軸上),點(diǎn),

(3)   求的面積的最大值。

 

 

查看答案和解析>>

 (理)已知?jiǎng)狱c(diǎn)分別在軸、軸上,且滿足,點(diǎn)在線段上,且是不為零的常數(shù))。設(shè)點(diǎn)的軌跡為曲線。

(1)   求點(diǎn)的軌跡方程;

(2)   若,點(diǎn)上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)動(dòng)點(diǎn)(不在坐標(biāo)軸上),點(diǎn),求的面積的最大值。

 

(文)已知:函數(shù)f(x)=a+ (a>1) 

   (1) 證明:函數(shù)f(x)在(-1,+∞ )上為增函數(shù);

   (2)證明方程f(x)=0沒有負(fù)根.

 

 

 

 

查看答案和解析>>

(理)已知?jiǎng)狱c(diǎn)分別在軸、軸上,且滿足,點(diǎn)在線段上,且
是不為零的常數(shù))。設(shè)點(diǎn)的軌跡為曲線
(1)  求點(diǎn)的軌跡方程;
(2)  若,點(diǎn)上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)動(dòng)點(diǎn)(不在坐標(biāo)軸上),點(diǎn),
(3)  求的面積的最大值。

查看答案和解析>>

說(shuō)明:

1.本解答僅給出了一種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容對(duì)照評(píng)分標(biāo)準(zhǔn)制訂相應(yīng)的評(píng)分細(xì)則。

2.評(píng)閱試卷,應(yīng)堅(jiān)持每題評(píng)閱到底,不要因?yàn)榭忌慕獯鹬谐霈F(xiàn)錯(cuò)誤而中斷對(duì)該題的評(píng)閱,當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后繼部分的解答未改變?cè)擃}的內(nèi)容和難度,可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應(yīng)得分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯(cuò)誤,就不再給分。

3.解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù)。

4.給分或扣分均以1分為單位,選擇題和填空題不給中間分。

一.選擇題:本題考查基本知識(shí)和基本運(yùn)算

DDDBB;CDACA;CA

二.填空題:本題考查基本知識(shí)和基本運(yùn)算

13.2;           14.               15.  2;           16. ①②③④

 

三.解答題:(本大題共6小題,共74分,解答應(yīng)寫出文字說(shuō)明,證明過程或演算步驟)

17.(本小題滿分12分)

解:(I)解:

…………………………………………6分

        由 ,得   

        的單調(diào)遞增區(qū)間為

   (II)的圖象關(guān)于直線對(duì)稱,

               

              

18.(本小題滿分12分)

解:(Ⅰ)當(dāng)M是A1C1中點(diǎn)時(shí),BC1//平面MB1A.…2分

∵M(jìn)為A1C1中點(diǎn),延長(zhǎng)AM、CC1,使AM與CC1    

延長(zhǎng)線交于N,則NC1=C1C=a.

連結(jié)NB1并延長(zhǎng)與CB延長(zhǎng)線交于G,

則BG=CB,NB1=B1G.………………………4分

在△CGN中,BC1為中位線,BC1//GN.

又GN平面MAB1

∴BC1//平面MAB1 .………………………6分

(Ⅱ)∵BC1//平面MB1A,∴M是A1C1中點(diǎn).

∵△AGC中, BC=BA=BG ,∴∠GAC=90°.

即AC⊥AG,  又AG⊥AA1 ,  

∴AG⊥平面A1ACC1

,………………………………  8分

∴∠MAC為平面MB1A與平面ABC所成二面角的平面角.

∴所求銳二面角大小為.    …………………………………………10分

(Ⅲ)設(shè)動(dòng)點(diǎn)M到平面A1ABB1的距離為

.當(dāng)點(diǎn)M與點(diǎn)C1重合時(shí),三棱錐B―AB1M的體積最大,最大值為 …12分

 

19.(本小題滿分12分)

解:設(shè)搖獎(jiǎng)一次,獲得一、二、三、四、五等獎(jiǎng)的事件分別記為A,B,C,D,E。搖獎(jiǎng)的概率大小與扇形區(qū)域 A,B,C,D,E所對(duì)應(yīng)的圓心角大小成正比。

,     2分

(1)搖獎(jiǎng)兩次,均獲得一等獎(jiǎng)的概率;     4分

(2)購(gòu)物滿40元即可獲得兩次搖獎(jiǎng)機(jī)會(huì),所得的獎(jiǎng)金數(shù)為可以為2、3、4、5、6、7、8、9、10。從而有

  7分

所以的分布列為:

2

3

4

5

6

7

8

9

10

8分

 

  10分

(3)由(2)知消費(fèi)者剛好消費(fèi)40元兩次搖獎(jiǎng)機(jī)會(huì)搖獎(jiǎng)所得的平均獎(jiǎng)數(shù)為4.63元;若選擇讓利獲得的優(yōu)惠為,顯然4.63元 >4元。故選擇搖獎(jiǎng)比較劃算。12分

(文)解:設(shè)搖獎(jiǎng)一次,獲得一、二、三、四、五等獎(jiǎng)的事件分別記為A,B,C,D,E。搖獎(jiǎng)的概率大小與扇形區(qū)域 A,B,C,D,E所對(duì)應(yīng)的圓心角大小成正比。,   3分

(1)搖獎(jiǎng)一次,至多獲得三等獎(jiǎng)的事件記為F,則; 即搖獎(jiǎng)一次,至多獲得三等獎(jiǎng)的概率為;

5分

(2)搖獎(jiǎng)兩次,均獲得一等獎(jiǎng)的概率  8分

(3)購(gòu)物滿40元即可獲得兩次搖獎(jiǎng)機(jī)會(huì),由題意知,獎(jiǎng)金數(shù)的可能值為8、9、10。某消費(fèi)者購(gòu)物滿40元,搖獎(jiǎng)后獎(jiǎng)金數(shù)不低于8元的事件記為G,則有

答:某消費(fèi)者購(gòu)物滿40元,搖獎(jiǎng)后獎(jiǎng)金數(shù)不低于8元的概率為。12分

 

20.(本小題滿分12分)

解:(Ⅰ)設(shè)、、,則

,

由此及

,即;

(Ⅱ)當(dāng)時(shí),曲線的方程為。

依題意,直線均不可能與坐標(biāo)軸平行,故不妨設(shè)直線),直線,從而有

。

同理,有。

是等腰三角形,則,由此可得

,即。

    下面討論方程的根的情形():

    ①若,則,方程沒有實(shí)根;

②若,則,方程有兩個(gè)相等的實(shí)根;

③若,則,方程有兩個(gè)相異的正實(shí)根,且均不等于(因?yàn)?sub>

)。

    綜上所述,能是等腰三角形:當(dāng)時(shí),這樣的三角形有且僅有一個(gè);而當(dāng)時(shí),這樣的三角形有且僅有三個(gè)。

21.解:(I)………………2分

        當(dāng)時(shí),;當(dāng)時(shí),

   ,(1,內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減…………4分

     故的極小值為  ……………………………………5分

(II)①若  的圖象與軸只有一個(gè)交點(diǎn)。……6分

②若,當(dāng)時(shí),,當(dāng)時(shí),

的極大值為

的極小值為  的圖象與軸有三個(gè)公共點(diǎn)。

③若,則。

 當(dāng)時(shí),,當(dāng)時(shí),

的圖象與軸只有一個(gè)交點(diǎn)

④若,則 的圖象與軸只有一個(gè)交點(diǎn)

⑤當(dāng),由(I)知的極大值為

綜上所述,若的圖象與軸只有一個(gè)公共點(diǎn);

,的圖象與軸有三個(gè)公共點(diǎn)。

 

 

22.(本小題滿分14分)

解:(Ⅰ)∵第n個(gè)集合有n個(gè)奇數(shù),∴在前n個(gè)集合中共有奇數(shù)的個(gè)數(shù)為

.…………………………………… 2分

則第n個(gè)集合中最大的奇數(shù)=.………………4分

(Ⅱ)(i)由(Ⅰ)得 ,

從而得.……………………………………6分

(ii)由(i)得 , ∴ .…7分

(1)當(dāng)時(shí),,顯然2≤.……………………………………8分

(2)當(dāng)≥2 時(shí), ………9分

> ,……………………………………………10分

.………………………………………………12分

<  .即

綜上所述,2≤ . ……………………………………………………14分


同步練習(xí)冊(cè)答案