科目: 來源: 題型:
【題目】一對夫婦為了給他們的獨生孩子支付將來上大學(xué)的費用,從孩子一周歲生日開始,每年到銀行儲蓄元一年定期,若年利率為保持不變,且每年到期時存款(含利息)自動轉(zhuǎn)為新的一年定期,當(dāng)孩子18歲生日時不再存入,將所有存款(含利息)全部取回,則取回的錢的總數(shù)為
A.B.
C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙兩人用一顆均勻的骰子(一種正方體玩具,六個面分別標(biāo)有數(shù)字1,2,3,4,5,6)做拋擲游戲,并制定如下規(guī)則:若擲出的點數(shù)不大于4,則由原擲骰子的人繼續(xù)擲,否則,輪到對方擲.已知甲先擲.
(1)若共拋擲4次,求甲拋擲次數(shù)的概率分布列和數(shù)學(xué)期望;
(2)求第n次(,)由乙拋擲的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線C:()的焦點F在直線上,平行于x軸的兩條直線,分別交拋物線C于A,B兩點,交該拋物線的準(zhǔn)線于D,E兩點.
(1)求拋物線C的方程;
(2)若F在線段上,P是的中點,證明:.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等差數(shù)列的前n項和,且滿足,,數(shù)列是首項為2,公比為q()的等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)設(shè)正整數(shù)k,t,r成等差數(shù)列,且,若,求實數(shù)q的最大值;
(3)若數(shù)列滿足,,其前n項和為,當(dāng)時,是否存在正整數(shù)m,使得恰好是數(shù)列中的項?若存在,求岀m的值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),,.
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)令,且函數(shù)有三個彼此不相等的零點0,m,n,其中.
①若,求函數(shù)在處的切線方程;
②若對,恒成立,求實數(shù)t的去取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某濕地公園的鳥瞰圖是一個直角梯形,其中:,,,長1千米,長千米,公園內(nèi)有一個形狀是扇形的天然湖泊,扇形以長為半徑,弧為湖岸,其余部分為灘地,B,D點是公園的進出口.公園管理方計劃在進出口之間建造一條觀光步行道:線段線段弧,其中Q在線段上(異于線段端點),與弧相切于P點(異于弧端點]根據(jù)市場行情,段的建造費用是每千米10萬元,湖岸段弧的建造費用是每千米萬元(步行道的寬度不計),設(shè)為弧度觀光步行道的建造費用為萬元.
(1)求步行道的建造費用關(guān)于的函數(shù)關(guān)系式,并求其走義域;
(2)當(dāng)為何值時,步行道的建造費用最低?
查看答案和解析>>
科目: 來源: 題型:
【題目】若存在常數(shù),使得對任意,,均有,則稱為有界集合,同時稱為集合的上界.
(1)設(shè),,試判斷是否為有界集合,并說明理由;
(2)已知常數(shù),若函數(shù)為有界集合,求集合的上界最小值.
(3)已知函數(shù),記,,,,求使得集合為有界集合時的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在海岸線一側(cè)有一休閑游樂場,游樂場的前一部分邊界為曲線段,該曲線段是函數(shù),的圖象,圖象的最高點為.邊界的中間部分為長1千米的直線段,且.游樂場的后部分邊界是以為圓心的一段圓弧.
(1)求曲線段的函數(shù)表達式;
(2)如圖,在扇形區(qū)域內(nèi)建一個平行四邊形休閑區(qū),平行四邊形的一邊在海岸線上,一邊在半徑上,另外一個頂點在圓弧上,且,求平行四邊形休閑區(qū)面積的最大值及此時的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)拋物線的準(zhǔn)線與軸的交點為,過作直線交拋物線于兩點.
(1)求線段中點的軌跡;
(2)若線段的垂直平分線交對稱軸于),求的取值范圍;
(3)若直線的斜率依次取時,線段的垂直平分線與對稱軸的交點依次為
,當(dāng)時,
求: 的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),為自然對數(shù)的底數(shù).
(1)當(dāng)時,證明,,;
(2)若函數(shù)在上存在極值點,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com