【題目】已知函數(shù)為自然對數(shù)的底數(shù).

1)當時,證明,;

2)若函數(shù)上存在極值點,求實數(shù)的取值范圍.

【答案】1)證明見解析:(2

【解析】

(1)代入,求導分析函數(shù)單調(diào)性,的最小值即可證明.

(2) ,若函數(shù)上存在兩個極值點,則上有根.再分,,利用函數(shù)的零點存在定理討論導函數(shù)的零點即可.

(1)證明:當時,,則,

時,,則,又因為,

所以當時,,僅時,,

所以上是單調(diào)遞減,所以,即.

(2),因為,所以,

①當時,恒成立,所以上單調(diào)遞增,沒有極值點.

②當時,在區(qū)間上單調(diào)遞增,

因為.

時,,

所以上單調(diào)遞減,沒有極值點.

時,,所以存在,使

時,時,

所以處取得極小值,為極小值點.

綜上可知,若函數(shù)上存在極值點,則實數(shù).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中,e是自然對數(shù)的底數(shù).

1)若上的增函數(shù),求實數(shù)a的取值范圍;

2)若,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐中,底面為直角梯形,,,,平面,分別是的中點.

1)證明:;

2)若,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)滿足:①定義為;②.

1)求的解析式;

2)若;均有成立,求的取值范圍;

3)設(shè),試求方程的解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)有關(guān)資料預測,某市下月1—14日的空氣質(zhì)量指數(shù)趨勢如下圖所示.,根據(jù)已知折線圖,解答下面的問題:

1)求污染指數(shù)的眾數(shù)及前五天污染指數(shù)的平均值;(保留整數(shù))

2)為了更好發(fā)揮空氣質(zhì)量監(jiān)測服務(wù)人民的目的,監(jiān)測部門在發(fā)布空氣質(zhì)量指數(shù)的同時,也給出了出行建議,比如空氣污染指數(shù)大于150時需要戴口罩,超過200時建議減少外出活動等等.如果某人事先沒有注意到空氣質(zhì)量預報,而在1—12號這12天中隨機選定一天,欲在接下來的兩天中(不含選定當天)進行外出活動.求其外出活動的兩天期間.

①恰好都遭遇重度及以上污染天氣的概率;

②至少有一天能避開重度及以上污染天氣的概率.

附:空氣質(zhì)量等級參考表:

等級

優(yōu)

輕度污染

中度污染

重度污染

嚴重污染

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)求函數(shù)的單調(diào)增區(qū)間;

2)令,且函數(shù)有三個彼此不相等的零點0,m,n,其中.

①若,求函數(shù)處的切線方程;

②若對,恒成立,求實數(shù)t的去取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線的參數(shù)方程為為參數(shù)).

1)求的交點的直角坐標;

2)求上的點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在中老年人群體中,腸胃病是一種高發(fā)性疾病某醫(yī)學小組為了解腸胃病與運動之間的聯(lián)系,調(diào)查了50位中老年人每周運動的總時長(單位:小時),將數(shù)據(jù)分成[0,4),[4,8),[814),[14,16),[16,20),[20,24]6組進行統(tǒng)計,并繪制出如圖所示的柱形圖.

圖中縱軸的數(shù)字表示對應(yīng)區(qū)間的人數(shù)現(xiàn)規(guī)定:每周運動的總時長少于14小時為運動較少.

每周運動的總時長不少于14小時為運動較多.

1)根據(jù)題意,完成下面的2×2列聯(lián)表:

有腸胃病

無腸胃病

總計

運動較多

運動較少

總計

2)能否有99.9%的把握認為中老年人是否有腸胃病與運動有關(guān)?

附:K2na+b+c+d

PK2k

0.0.50

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)(AQI)的檢測數(shù)據(jù),結(jié)果統(tǒng)計如表:

AQI

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

重度污染

天數(shù)

6

14

18

27

25

10

1)從空氣質(zhì)量指數(shù)屬于[0,50],(50,100]的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;

2)已知某企業(yè)每天因空氣質(zhì)量造成的經(jīng)濟損失y(單位:元)與空氣質(zhì)量指數(shù)x的關(guān)系式為,假設(shè)該企業(yè)所在地7月與8月每天空氣質(zhì)量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴重污染的概率分別為.9月每天的空氣質(zhì)量對應(yīng)的概率以表中100天的空氣質(zhì)量的頻率代替.

i)記該企業(yè)9月每天因空氣質(zhì)量造成的經(jīng)濟損失為X元,求X的分布列;

ii)試問該企業(yè)7月、8月、9月這三個月因氣質(zhì)量造成的經(jīng)濟損失總額的數(shù)學期望是否會超過2.88萬元?說明你的理由.

查看答案和解析>>

同步練習冊答案