科目: 來源: 題型:
【題目】有次水下考古活動中,潛水員需潛入水深為30米的水底進行作業(yè),其用氧量包含以下三個方面:①下潛時,平均速度為每分鐘米,每分鐘的用氧量為升;②水底作業(yè)需要10分鐘,每分鐘的用氧量為0.3升;③返回水面時,速度為每分鐘米,每分鐘用氧量為0.2升;設(shè)潛水員在此次考古活動中的總用氧量為升;
(1)將表示為的函數(shù);
(2)若,求總用氧量的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),,其中為自然對數(shù)的底數(shù).
(Ⅰ)若曲線在點處的切線與直線垂直,求實數(shù)的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)用表示,中的較大者,記函數(shù).若函數(shù)在內(nèi)恰有2個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓過點.
(Ⅰ)求橢圓的方程,并求其離心率;
(Ⅱ)過點作軸的垂線,設(shè)點為第四象限內(nèi)一點且在橢圓上(點不在直線上),直線關(guān)于的對稱直線與橢圓交于另一點.設(shè)為坐標(biāo)原點,判斷直線與直線的位置關(guān)系,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱柱ABCD-A1B1C1D1的底面為菱形,AA1⊥底面ABCD,∠BAD=120°,AB=2,E,F分別為CD,AA1的中點.
(Ⅰ)求證:DF∥平面B1AE;
(Ⅱ)若直線AD1與平面B1AE所成角的正弦值為,求AA1的長;
(Ⅲ)在(Ⅱ)的條件下,求二面角B1-AE-D1的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校為了普及環(huán)保知識,增強學(xué)生的環(huán)保意識,在全校組織了一次有關(guān)環(huán)保知識的競賽.經(jīng)過初賽、復(fù)賽,甲、乙兩個代表隊(每隊3人)進入了決賽,規(guī)定每人回答一個問題,答對為本隊贏得10分,答錯得0分.假設(shè)甲隊中每人答對的概率均為,乙隊中3人答對的概率分別為,,,且各人回答正確與否相互之間沒有影響,用表示乙隊的總得分.
(Ⅰ)求的分布列及數(shù)學(xué)期望;
(Ⅱ)求甲、乙兩隊總得分之和等于30分且甲隊獲勝的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,,…,是由()個整數(shù),,…,按任意次序排列而成的數(shù)列,數(shù)列滿足(),,,…,是,,…,按從大到小的順序排列而成的數(shù)列,記.
(1)證明:當(dāng)為正偶數(shù)時,不存在滿足()的數(shù)列.
(2)寫出(),并用含的式子表示.
(3)利用,證明:及.(參考:.)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:(),過原點的兩條直線和分別與交于點、和、,得到平行四邊形.
(1)當(dāng)為正方形時,求該正方形的面積.
(2)若直線和關(guān)于軸對稱,上任意一點到和的距離分別為和,當(dāng)為定值時,求此時直線和的斜率及該定值.
(3)當(dāng)為菱形,且圓內(nèi)切于菱形時,求,滿足的關(guān)系式.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,,,是各項均為正數(shù)的等差數(shù)列,其公差大于零.若線段,,,的長分別為,,,,則( ).
A.對任意的,均存在以,,為三邊的三角形
B.對任意的,均不存在以,,為三邊的三角形
C.對任意的,均存在以,,為三邊的三角形
D.對任意的,均不存在以,,為三邊的三角形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com