科目: 來源: 題型:
【題目】下列結(jié)論中正確的個(gè)數(shù)是( ).
①在中,若,則是等腰三角形;
②在中,若 ,則
③兩個(gè)向量,共線的充要條件是存在實(shí)數(shù),使
④等差數(shù)列的前項(xiàng)和公式是常數(shù)項(xiàng)為0的二次函數(shù).
A.0B.1C.2D.3
查看答案和解析>>
科目: 來源: 題型:
【題目】唐代詩人李頎的詩《古從軍行》開頭兩句說:“白日登山望烽火,黃昏飲馬傍交河.”詩中隱含著一個(gè)有趣的數(shù)學(xué)問題一“將軍飲馬”問題,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬后再回軍營,怎樣走才能使總路程最短?在平面直角坐標(biāo)系中,設(shè)軍營所在區(qū)域?yàn)?/span>,若將軍從點(diǎn)處出發(fā),河岸線所在直線方程為,并假定將軍只要到達(dá)軍營所在區(qū)域即回到軍營,則“將軍飲馬”的最短總路程為( ).
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宜傳費(fèi),需了解年宣傳費(fèi)對年銷售量(單位:t)的影響.該公司對近5年的年宣傳費(fèi)和年銷售量數(shù)據(jù)進(jìn)行了研究,發(fā)現(xiàn)年宣傳費(fèi)x(萬元)和年銷售量y(單位:t)具有線性相關(guān)關(guān)系,并對數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計(jì)量的值.
x(萬元) | 2 | 4 | 5 | 3 | 6 |
y(單位:t) | 2.5 | 4 | 4.5 | 3 | 6 |
(1)根據(jù)表中數(shù)據(jù)建立年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程.
(2)已知這種產(chǎn)品的年利潤(萬元)與x,y的關(guān)系為根據(jù)(1)中的結(jié)果回答下列問題:
①當(dāng)年宣傳費(fèi)為10萬元時(shí),預(yù)測該產(chǎn)品的年銷售量及年利潤;
②估計(jì)該產(chǎn)品的年利潤與年宣傳費(fèi)的比值的最大值.
附:回歸方程中的斜率和截距的最小二乘估計(jì)公式分別為.
參考數(shù)據(jù):.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率,且圓經(jīng)過橢圓C的上、下頂點(diǎn).
(1)求橢圓C的方程;
(2)若直線l與橢圓C相切,且與橢圓相交于M,N兩點(diǎn),證明:的面積為定值(O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目: 來源: 題型:
【題目】現(xiàn)有下列四個(gè)結(jié)論,其中所有正確結(jié)論的編號是___________.
①若,則的最大值為;
②若,,是等差數(shù)列的前項(xiàng),則;
③“”的一個(gè)必要不充分條件是“”;
④“,”的否定為“,”.
查看答案和解析>>
科目: 來源: 題型:
【題目】某省新課改后某校為預(yù)測2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機(jī)抽取50人,得到各班抽取的人數(shù)和其中本科上線人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計(jì)圖.
(1)根據(jù)條形統(tǒng)計(jì)圖,估計(jì)本屆高三學(xué)生本科上線率.
(2)已知該省甲市2020屆高考考生人數(shù)為4萬,假設(shè)以(1)中的本科上線率作為甲市每個(gè)考生本科上線的概率.
(i)若從甲市隨機(jī)抽取10名高三學(xué)生,求恰有8名學(xué)生達(dá)到本科線的概率(結(jié)果精確到0.01);
(ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬,假設(shè)該市每個(gè)考生本科上線率均為,若2020屆高考本科上線人數(shù)乙市的均值不低于甲市,求p的取值范圍.
可能用到的參考數(shù)據(jù):取,.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線C的參數(shù)方程和直線的直角坐標(biāo)方程;
(2)若直線與軸和y軸分別交于A,B兩點(diǎn),P為曲線C上的動(dòng)點(diǎn),求△PAB面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,直線與橢圓在第一象限內(nèi)的交點(diǎn)是,點(diǎn)在軸上的射影恰好是橢圓的右焦點(diǎn),橢圓另一個(gè)焦點(diǎn)是,且.
(1)求橢圓的方程;
(2)直線過點(diǎn),且與橢圓交于兩點(diǎn),求的內(nèi)切圓面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某市教育部門為了了解全市高一學(xué)生的身高發(fā)育情況,從本市全體高一學(xué)生中隨機(jī)抽取了100人的身高數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。經(jīng)數(shù)據(jù)處理后,得到了如下圖1所示的頻事分布直方圖,并發(fā)現(xiàn)這100名學(xué)生中,身不低于1.69米的學(xué)生只有16名,其身高莖葉圖如下圖2所示,用樣本的身高頻率估計(jì)該市高一學(xué)生的身高概率.
(I)求該市高一學(xué)生身高高于1.70米的概率,并求圖1中的值.
(II)若從該市高一學(xué)生中隨機(jī)選取3名學(xué)生,記為身高在的學(xué)生人數(shù),求的分布列和數(shù)學(xué)期望;
(Ⅲ)若變量滿足且,則稱變量滿足近似于正態(tài)分布的概率分布.如果該市高一學(xué)生的身高滿足近似于正態(tài)分布的概率分布,則認(rèn)為該市高一學(xué)生的身高發(fā)育總體是正常的.試判斷該市高一學(xué)生的身高發(fā)育總體是否正常,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù) 。
(1)當(dāng)時(shí),討論的單調(diào)性;
(2)若在點(diǎn)處的切線方程為,若對任意的
恒有,求的取值范圍(是自然對數(shù)的底數(shù))。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com