【題目】某公司為確定下一年度投入某種產(chǎn)品的宜傳費,需了解年宣傳費對年銷售量(單位:t)的影響.該公司對近5年的年宣傳費和年銷售量數(shù)據(jù)進行了研究,發(fā)現(xiàn)年宣傳費x(萬元)和年銷售量y(單位:t)具有線性相關(guān)關(guān)系,并對數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計量的值.
x(萬元) | 2 | 4 | 5 | 3 | 6 |
y(單位:t) | 2.5 | 4 | 4.5 | 3 | 6 |
(1)根據(jù)表中數(shù)據(jù)建立年銷售量y關(guān)于年宣傳費x的回歸方程.
(2)已知這種產(chǎn)品的年利潤(萬元)與x,y的關(guān)系為根據(jù)(1)中的結(jié)果回答下列問題:
①當(dāng)年宣傳費為10萬元時,預(yù)測該產(chǎn)品的年銷售量及年利潤;
②估計該產(chǎn)品的年利潤與年宣傳費的比值的最大值.
附:回歸方程中的斜率和截距的最小二乘估計公式分別為.
參考數(shù)據(jù):.
【答案】(1);(2)①約為22.5萬元,②0.35.
【解析】
(1)由已知求得與的值,則線性回歸方程可求;
(2)①在(1)中求得的線性回歸方程中,取求得值,進一步得到年利潤的預(yù)報值;
②寫出年利潤與年宣傳費的比值的函數(shù)式,利用基本不等式求最值.
(1).
設(shè)y關(guān)于x的線性回歸方程為,
則,
故y關(guān)于x的線性回歸方程為.
(2)①由(1)知,當(dāng)時,
,則該產(chǎn)品的年銷售量約為,
,則該產(chǎn)品的年利潤約為22.5萬元.
②,
.
,
當(dāng)且僅當(dāng),即時取等號,
,
該產(chǎn)品的年利潤與年宣傳費的比值的最大值為0.35.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司有l000名員工,其中男性員工400名,采用分層抽樣的方法隨機抽取100名員工進行5G手機購買意向的調(diào)查,將計劃在今年購買5G手機的員工稱為“追光族”,計劃在明年及明年以后才購買5G手機的員工稱為“觀望者”調(diào)查結(jié)果發(fā)現(xiàn)抽取的這100名員工中屬于“追光族”的女性員工和男性員工各有20人.
(Ⅰ)完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為該公司員工屬于“追光族”與“性別”有關(guān);
屬于“追光族” | 屬于“觀望者” | 合計 | |
女性員工 | |||
男性員工 | |||
合計 | 100 |
(Ⅱ)已知被抽取的這l00名員工中有6名是人事部的員工,這6名中有3名屬于“追光族”現(xiàn)從這6名中隨機抽取3名,求抽取到的3名中恰有1名屬于“追光族”的概率.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系中的坐標(biāo)原點為極點,軸的正半抽為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,直線的參數(shù)方程是(為參數(shù)).
(1)求曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于、兩點,且,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓中心在原點,焦點在坐標(biāo)軸上,直線與橢圓在第一象限內(nèi)的交點是,點在軸上的射影恰好是橢圓的右焦點,橢圓另一個焦點是,且.
(1)求橢圓的方程;
(2)直線過點,且與橢圓交于兩點,求的內(nèi)切圓面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的個數(shù)是( )
①直線上有兩個點到平面的距離相等,則這條直線和這個平面平行;
②為異面直線,則過且與平行的平面有且僅有一個;
③直四棱柱是直平行六面體;
④兩相鄰側(cè)面所成角相等的棱錐是正棱錐.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若在內(nèi)單調(diào)遞減,求實數(shù)的取值范圍;
(Ⅱ)若函數(shù)有兩個極值點分別為,,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形,一個數(shù)學(xué)意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).分形幾何學(xué)不僅讓人們感悟到科學(xué)與藝木的融合,數(shù)學(xué)與藝術(shù)審美的統(tǒng)一,而且還有其深刻的科學(xué)方法論意義.如圖,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于-種分形,具體作法是取一個實心三角形,沿三角形的三邊中點連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復(fù)上述過程逐次得到各個圖形.
若在圖④中隨機選。c,則此點取自陰影部分的概率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com