相關(guān)習(xí)題
 0  265116  265124  265130  265134  265140  265142  265146  265152  265154  265160  265166  265170  265172  265176  265182  265184  265190  265194  265196  265200  265202  265206  265208  265210  265211  265212  265214  265215  265216  265218  265220  265224  265226  265230  265232  265236  265242  265244  265250  265254  265256  265260  265266  265272  265274  265280  265284  265286  265292  265296  265302  265310  266669 

科目: 來源: 題型:

【題目】已知實數(shù),函數(shù)在區(qū)間上的最大值是2,則______

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)若,對恒成立,求實數(shù)的取值范圍;

3)當(dāng)時,設(shè).若正實數(shù),滿足,證明:.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線C)的焦點為

1)動直線lF點且與拋物線C交于M,N兩點,點My軸的左側(cè),過點M作拋物線C準(zhǔn)線的垂線,垂足為M1,點E上,且滿足連接并延長交y軸于點D,的面積為,求拋物線C的方程及D點的縱坐標(biāo);

2)點H為拋物線C準(zhǔn)線上任一點,過H作拋物線C的兩條切線,,切點為AB,證明直線過定點,并求面積的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】基于移動互聯(lián)技術(shù)的共享單車被稱為新四大發(fā)明之一,短時間內(nèi)就風(fēng)靡全國,帶給人們新的出行體驗,某共享單車運(yùn)營公司的市場研究人員為了解公司的經(jīng)營狀況,對該公司最近六個月內(nèi)的市場占有率進(jìn)行了統(tǒng)計,設(shè)月份代碼為x,市場占有率為y%),得結(jié)果如下表

年月

2019.11

2019.12

2020.1

2020.2

2020.3

2020.4

x

1

2

3

4

5

6

y

9

11

14

13

18

19

1)觀察數(shù)據(jù),可用線性回歸模型擬合yx的關(guān)系,請用相關(guān)系數(shù)加以說明(精確到0.001);

2)求y關(guān)于x的線性回歸方程,并預(yù)測該公司20206月份的市場占有率;

3)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購一批單車投入市場,現(xiàn)有采購成本分別為1000/輛和800/輛的甲、乙兩款車型,報廢年限不相同.考慮到公司的經(jīng)濟(jì)效益,該公司決定先對這兩款單車各100輛進(jìn)行科學(xué)模擬測試,得到兩款單車使用壽命統(tǒng)計如下表:

報廢年限

車輛數(shù)

車型

1

2

3

4

總計

甲款

10

40

30

20

100

乙款

15

35

40

10

100

經(jīng)測算,平均每輛單車每年可以為公司帶來收入500元,不考慮除采購成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,且用頻率估計每輛單車使用壽命的概率,以每輛單車產(chǎn)生利潤的期望值為決策依據(jù),如果你是該公司的負(fù)責(zé)人,你會選擇采購哪款車型?

參考數(shù)據(jù):,,.

參考公式,相關(guān)系數(shù),回歸方程中斜率和截距的最小二乘估計公式分別為,.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示的四棱錐中,底面為矩形,平面,M,N分別是,的中點.

1)求證:平面;

2)若直線與平面所成角的余弦值為,求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某商場一年中各月份的收入、支出(單位:萬元)情況的統(tǒng)計如折線圖所示,則下列說法正確的是(

A.23月份的收入的變化率與1112月份的收入的變化率相同

B.支出最高值與支出最低值的比是

C.第三季度平均收入為60萬元

D.利潤最高的月份是2月份

查看答案和解析>>

科目: 來源: 題型:

【題目】橢圓的離心率為,左焦點到直線的距離為10,圓.

1)求橢圓的方程;

2)若是橢圓上任意一點,為圓的任一直徑,求的取值范圍;

3)是否存在以橢圓上點為圓心的圓,使得過圓上任意一點作圓的切線,切點為,都滿足?若存在,求出圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知扇環(huán)如圖所示,是扇環(huán)邊界上一動點,且滿足,則的取值范圍為_________.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),若,則函數(shù)的零點個數(shù)為________;若函數(shù)4個零點,則實數(shù)的取值范圍是_______.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),

1)討論的單調(diào)性;

2)若,是函數(shù)的兩個不同零點,證明:.

查看答案和解析>>

同步練習(xí)冊答案