【題目】基于移動(dòng)互聯(lián)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時(shí)間內(nèi)就風(fēng)靡全國,帶給人們新的出行體驗(yàn),某共享單車運(yùn)營公司的市場(chǎng)研究人員為了解公司的經(jīng)營狀況,對(duì)該公司最近六個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),設(shè)月份代碼為x,市場(chǎng)占有率為y(%),得結(jié)果如下表
年月 | 2019.11 | 2019.12 | 2020.1 | 2020.2 | 2020.3 | 2020.4 |
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 9 | 11 | 14 | 13 | 18 | 19 |
(1)觀察數(shù)據(jù),可用線性回歸模型擬合y與x的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明(精確到0.001);
(2)求y關(guān)于x的線性回歸方程,并預(yù)測(cè)該公司2020年6月份的市場(chǎng)占有率;
(3)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購一批單車投入市場(chǎng),現(xiàn)有采購成本分別為1000元/輛和800元/輛的甲、乙兩款車型,報(bào)廢年限不相同.考慮到公司的經(jīng)濟(jì)效益,該公司決定先對(duì)這兩款單車各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車使用壽命統(tǒng)計(jì)如下表:
報(bào)廢年限 車輛數(shù) 車型 | 1年 | 2年 | 3年 | 4年 | 總計(jì) |
甲款 | 10 | 40 | 30 | 20 | 100 |
乙款 | 15 | 35 | 40 | 10 | 100 |
經(jīng)測(cè)算,平均每輛單車每年可以為公司帶來收入500元,不考慮除采購成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,且用頻率估計(jì)每輛單車使用壽命的概率,以每輛單車產(chǎn)生利潤的期望值為決策依據(jù),如果你是該公司的負(fù)責(zé)人,你會(huì)選擇采購哪款車型?
參考數(shù)據(jù):,,,.
參考公式,相關(guān)系數(shù),回歸方程中斜率和截距的最小二乘估計(jì)公式分別為,.
【答案】(1)見解析(2);2(3)選擇乙款車型
【解析】
(1)由相關(guān)系數(shù)公式求得y與x之間相關(guān)系數(shù),由相關(guān)系數(shù)接近1可得y與x之間具有較強(qiáng)的線性相關(guān)關(guān)系,可用線性回歸模型進(jìn)行;
(2) 由已知分別求出與的值,可得線性回歸方程;
(3)分別列出甲款單車的利潤x與乙款單車的利潤y的分布列,求得期望,比較大小得結(jié)論.
(1)由參考數(shù)據(jù)可得,接近1,
∴y與x之間具有較強(qiáng)的線性相關(guān)關(guān)系,可用線性回歸模型進(jìn)行擬合:
(2)∵,,
,,
∴y關(guān)于x的線性回歸方程為.
2020年6月份代碼,代入線性回歸方程得,于是2020年6月份的市場(chǎng)占有率預(yù)報(bào)值為2
(3)用頻率估計(jì)概率,甲款單車的利潤X的分布列為
X | -500 | 0 | 500 | 1000 |
P | 0.1 | 0.4 | 0.3 | 0.2 |
(元).
乙款單車的利潤Y的分布列為
Y | -300 | 200 | 700 | 1200 |
P | 0.15 | 0.35 | 0.4 | 0.1 |
(元),
以每輛單車產(chǎn)生利潤的期望值為決策依據(jù),故應(yīng)選擇乙款車型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三位數(shù)中,如果百位數(shù)字、十位數(shù)字、個(gè)位數(shù)字剛好能構(gòu)成等差數(shù)列,則稱為“等差三位數(shù)”,例如:147,642,777,420等等.等差三位數(shù)的總個(gè)數(shù)為( )
A.32B.36C.40D.45
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),將此函數(shù)圖象分別作以下變換,那么變換后的圖象可以與原圖象重合的變換方式有( )
①繞著x軸上一點(diǎn)旋轉(zhuǎn);②以x軸為軸,作軸對(duì)稱;
③沿x軸正方向平移;④以x軸的某一條垂線為軸,作軸對(duì)稱;
A.①③B.③④C.②③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,動(dòng)點(diǎn),線段QF與圓F相交于點(diǎn)P,線段PQ的長(zhǎng)度與點(diǎn)Q到y軸的距離相等.
(Ⅰ)求動(dòng)點(diǎn)Q的軌跡W的方程;
(Ⅱ)過點(diǎn)作兩條互相垂直的直線與W的交點(diǎn)分別是M和N(M在N的上方,A,M,N為不同的三點(diǎn)),求向量在y軸正方向上的投影的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若,則函數(shù)的零點(diǎn)個(gè)數(shù)為________;若函數(shù)有4個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車又稱為小黃車,近年來逐漸走進(jìn)了人們的生活,也成為減少空氣污染,緩解城市交通壓力的一種重要手段.為調(diào)查某地區(qū)居民對(duì)共享單車的使用情況,從該地區(qū)居民中按年齡用隨機(jī)抽樣的方式隨機(jī)抽取了人進(jìn)行問卷調(diào)查,得到這人對(duì)共享單車的評(píng)價(jià)得分統(tǒng)計(jì)填入莖葉圖,如下所示(滿分分):
(1)找出居民問卷得分的眾數(shù)和中位數(shù);
(2)請(qǐng)計(jì)算這位居民問卷的平均得分;
(3)若在成績(jī)?yōu)?/span>分的居民中隨機(jī)抽取人,求恰有人成績(jī)超過分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】冠狀病毒是一個(gè)大型病毒家族,可引起感冒以及中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重疾。霈F(xiàn)的新型冠狀病毒(nCoV)是從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴(yán)重病例中,感染可導(dǎo)致肺炎、嚴(yán)重急性呼吸綜合征、腎衰竭,甚至死亡.某醫(yī)院為篩查冠狀病毒,需要檢測(cè)血液中的指標(biāo).現(xiàn)從采集的血液樣品中抽取500份檢測(cè)指標(biāo)的值,由測(cè)量結(jié)果得下側(cè)頻率分布直方圖:
(1)求這500份血液樣品指標(biāo)值的平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表,記作);
(2)由頻率分布直方圖可以認(rèn)為,這項(xiàng)指標(biāo)的值X服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.在統(tǒng)計(jì)學(xué)中,把發(fā)生概率小于3‰的事件稱為小概率事件(正常條件下小概率事件的發(fā)生是不正常的).該醫(yī)院非常關(guān)注本院醫(yī)生健康狀況,隨機(jī)抽取20名醫(yī)生,獨(dú)立的檢測(cè)血液中指標(biāo)的值,結(jié)果發(fā)現(xiàn)4名醫(yī)生血液中指標(biāo)的值大于正常值20.03,試根據(jù)題中條件判斷該院醫(yī)生的健康率是否正常,并說明理由.
附:參考數(shù)據(jù)與公式:, ,;若,則①;②;③.,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列的極限一節(jié),課本中給出了計(jì)算由拋物線、軸以及直線所圍成的曲邊區(qū)域面積的一種方法:把區(qū)間平均分成份,在每一個(gè)小區(qū)間上作一個(gè)小矩形,使得每個(gè)矩形的左上端點(diǎn)都在拋物線上(如圖),則當(dāng)時(shí),這些小矩形面積之和的極限就是.已知.利用此方法計(jì)算出的由曲線、軸以及直線所圍成的曲邊區(qū)域的面積為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com