相關(guān)習(xí)題
 0  264152  264160  264166  264170  264176  264178  264182  264188  264190  264196  264202  264206  264208  264212  264218  264220  264226  264230  264232  264236  264238  264242  264244  264246  264247  264248  264250  264251  264252  264254  264256  264260  264262  264266  264268  264272  264278  264280  264286  264290  264292  264296  264302  264308  264310  264316  264320  264322  264328  264332  264338  264346  266669 

科目: 來源: 題型:

【題目】某機(jī)構(gòu)用“10分制調(diào)查了各階層人士對某次國際馬拉松賽事的滿意度,現(xiàn)從調(diào)查人群中隨機(jī)抽取16名,如圖莖葉圖記錄了他們的滿意度分?jǐn)?shù)(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉):

1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);

2)若滿意度不低于9.5分,則稱該被調(diào)查者的滿意度為極滿意,求從這16人中隨機(jī)選取3人,至少有2人滿意度是極滿意的概率;

查看答案和解析>>

科目: 來源: 題型:

【題目】在四棱錐中,平面平面,底面為矩形,,,、分別為線段、上一點(diǎn),且,.

(1)證明:;

(2)證明:平面,并求三棱錐的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù),直線與曲線分別交于兩點(diǎn).

(1)若點(diǎn)的極坐標(biāo)為,求的值;

(2)求曲線的內(nèi)接矩形周長的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知拋物線的焦點(diǎn)為,橢圓的中心在原點(diǎn),為其右焦點(diǎn),點(diǎn)為曲線在第一象限的交點(diǎn),且

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)為拋物線上的兩個(gè)動(dòng)點(diǎn),且使得線段的中點(diǎn)在直線上,

為定點(diǎn),求面積的最大值

查看答案和解析>>

科目: 來源: 題型:

【題目】某“雙一流”大學(xué)專業(yè)獎(jiǎng)學(xué)金是以所學(xué)專業(yè)各科考試成績作為評(píng)選依據(jù),分為專業(yè)一等獎(jiǎng)學(xué)金、專業(yè)二等獎(jiǎng)學(xué)金及專業(yè)三等獎(jiǎng)學(xué)金,且專業(yè)獎(jiǎng)學(xué)金每個(gè)學(xué)生一年最多只能獲得一次.圖(1)是統(tǒng)計(jì)了該校名學(xué)生周課外平均學(xué)習(xí)時(shí)間頻率分布直方圖,圖(2)是這名學(xué)生在年周課外平均學(xué)習(xí)時(shí)間段獲得專業(yè)獎(jiǎng)學(xué)金的頻率柱狀圖.

(Ⅰ)求這名學(xué)生中獲得專業(yè)三等獎(jiǎng)學(xué)金的人數(shù);

(Ⅱ)若周課外平均學(xué)習(xí)時(shí)間超過小時(shí)稱為“努力型”學(xué)生,否則稱為“非努力型”學(xué)生,列聯(lián)表并判斷是否有的把握認(rèn)為該校學(xué)生獲得專業(yè)一、二等獎(jiǎng)學(xué)金與是否是“努力型”學(xué)生有關(guān)?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知直三棱柱中,,,的中點(diǎn),上一點(diǎn),且.

(Ⅰ)證明:平面

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),

(1)求上的解析式;

(2)若,函數(shù),是否存在實(shí)數(shù)使得的最小值為,若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱錐中,平面ABCD,,PC與平面ABCD所成的角為,又.

1)證明:平面平面PCD

2)求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】班級(jí)新年晚會(huì)設(shè)置抽獎(jiǎng)環(huán)節(jié).不透明紙箱中有大小相同的紅球3個(gè),黃球2個(gè),且這5個(gè)球外別標(biāo)有數(shù)字1、23、4、5.有如下兩種方案可供選擇:

方案一:一次性抽取兩球,若顏色相同,則獲得獎(jiǎng)品;

方案二:依次有放回地抽取兩球,若數(shù)字之和大于5,則獲得獎(jiǎng)品.

1)寫出按方案一抽獎(jiǎng)的試驗(yàn)的所有基本事件;

2)哪種方案獲得獎(jiǎng)品的可能性更大?

查看答案和解析>>

科目: 來源: 題型:

【題目】正方體中,E、F、G、H分別為BC、CD、BB、的中點(diǎn),則下列結(jié)論正確的是(

A.B.平面平面

C.AEFD.二面角的大小為

查看答案和解析>>

同步練習(xí)冊答案