相關習題
 0  263903  263911  263917  263921  263927  263929  263933  263939  263941  263947  263953  263957  263959  263963  263969  263971  263977  263981  263983  263987  263989  263993  263995  263997  263998  263999  264001  264002  264003  264005  264007  264011  264013  264017  264019  264023  264029  264031  264037  264041  264043  264047  264053  264059  264061  264067  264071  264073  264079  264083  264089  264097  266669 

科目: 來源: 題型:

【題目】十三屆全國人大二次會議于201935日在京召開.為了了解某校大學生對兩會的關注程度,學校媒體在開幕后的第二天,從學生中隨機抽取了180人,對是否收看2019年兩會開幕會情況進行了問卷調查,統(tǒng)計數(shù)據(jù)得到列聯(lián)表如下:

收看

沒收看

合計

男生

40

女生

30

60

合計

1)請完成列聯(lián)表;

2)根據(jù)上表說明,能否有99%的把握認為該校大學生收看開幕會與性別有關?(結果精確到0.001

附:,其中.

0.10

0.05

0.025

0.01

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目: 來源: 題型:

【題目】中國倉儲指數(shù)是反映倉儲行業(yè)經(jīng)營和國內市場主要商品供求狀況與變化趨勢的已套指數(shù)體系.如圖所示的折線圖是2017年和2018年的中國倉儲指數(shù)走勢情況.根據(jù)該折線圖,下列結論中不正確的是( 。

A. 20181月至4月的倉儲指數(shù)比2017年同期波動性更大

B. 這兩年的最大倉儲指數(shù)都出現(xiàn)在4月份

C. 2018年全年倉儲指數(shù)平均值明顯低于2017

D. 2018年各倉儲指數(shù)的中位數(shù)與2017年各倉儲指數(shù)中位數(shù)差異明顯

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓C1左右焦點為F1F2直線(1xy0與該橢圓有一個公共點在y軸上,另一個公共點的坐標為(m,1).

1)求橢圓C的方程;

2)設P為橢圓C上任一點,過焦點F1,F2的弦分別為PM,PN,設λ1λ2,求λ12的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,將曲線向左平移個單位長度得到曲線.

(1)求曲線的參數(shù)方程;

(2)已知為曲線上的動點, 兩點的極坐標分別為,求的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】設函數(shù),

(1)若曲線在點處的切線與軸平行,求

(2)當時,函數(shù)的圖象恒在軸上方,求的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的兩個焦點分別為、,點在橢圓上,且的周長為

(Ⅰ)求橢圓的方程;

(Ⅱ)若點的坐標為,不過原點的直線與橢圓相交于兩點,設線段的中點為,點到直線的距離為,且,三點共線,求的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知關于x的一元二次函數(shù)fx)=ax22bx+8

1)設集合P{12,3}Q{23,4,5},分別從集合PQ中隨機取一個數(shù)作為ab,求函數(shù)yfx)在區(qū)間(﹣,2]上有零點且為減函數(shù)的概率?

2)設集合P[1,3]Q[2,5],分別從集合PQ中隨機取一個實數(shù)作為ab,求函數(shù)yfx)在區(qū)間(﹣,2]上有零點且為減函數(shù)的概率?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓C1ab0),橢圓C上的點到焦點距離的最大值為9,最小值為1

1)求橢圓C的標準方程;

2)求橢圓C上的點到直線l4x5y+400的最小距離?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱錐中,底面ABCD,,

求證:平面PAC;

若側棱PC上的點F滿足,求三棱錐的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,2012年春節(jié),攝影愛好者S在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測得立柱頂端O的仰角和立柱底部B的俯角均為,已知S的身高約為米(將眼睛距地面的距離按米處理)

(1) 求攝影者到立柱的水平距離和立柱的高度;

(2) 立柱的頂端有一長2米的彩桿MN繞中點O在S與立柱所在的平面內旋轉攝影者有一視角范圍為的鏡頭,在彩桿轉動的任意時刻,攝影者是否都可以將彩桿全部攝入畫面?說明理由.

查看答案和解析>>

同步練習冊答案